Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Signal Process Control ; 78: 104000, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35855489

RESUMO

The novel COVID-19 pandemic, has effectively turned out to be one of the deadliest events in modern history, with unprecedented loss of human life, major economic and financial setbacks and has set the entire world back quite a few decades. However, detection of the COVID-19 virus has become increasingly difficult due to the mutating nature of the virus, and the rise in asymptomatic cases. To counteract this and contribute to the research efforts for a more accurate screening of COVID-19, we have planned this work. Here, we have proposed an ensemble methodology for deep learning models to solve the task of COVID-19 detection from chest X-rays (CXRs) to assist Computer-Aided Detection (CADe) for medical practitioners. We leverage the strategy of transfer learning for Convolutional Neural Networks (CNNs), widely adopted in recent literature, and further propose an efficient ensemble network for their combination. The DenseNet-201 architecture has been trained only once to generate multiple snapshots, offering diverse information about the extracted features from CXRs. We follow the strategy of decision-level fusion to combine the decision scores using the blending algorithm through a Random Forest (RF) meta-learner. Experimental results confirm the efficacy of the proposed ensemble method, as shown through impressive results upon two open access COVID-19 CXR datasets - the largest COVID-X dataset, as well as a smaller scale dataset. On the large COVID-X dataset, the proposed model has achieved an accuracy score of 94.55% and on the smaller dataset by Chowdhury et al., the proposed model has achieved a 98.13% accuracy score.

2.
J Imaging ; 7(9)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34460801

RESUMO

Diabetic Retinopathy (DR) is a leading cause of vision loss in the world. In the past few years, artificial intelligence (AI) based approaches have been used to detect and grade DR. Early detection enables appropriate treatment and thus prevents vision loss. For this purpose, both fundus and optical coherence tomography (OCT) images are used to image the retina. Next, Deep-learning (DL)-/machine-learning (ML)-based approaches make it possible to extract features from the images and to detect the presence of DR, grade its severity and segment associated lesions. This review covers the literature dealing with AI approaches to DR such as ML and DL in classification and segmentation that have been published in the open literature within six years (2016-2021). In addition, a comprehensive list of available DR datasets is reported. This list was constructed using both the PICO (P-Patient, I-Intervention, C-Control, O-Outcome) and Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) 2009 search strategies. We summarize a total of 114 published articles which conformed to the scope of the review. In addition, a list of 43 major datasets is presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...