Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 6(266): 266ra170, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25504881

RESUMO

Doxorubicin is a highly effective anticancer chemotherapy agent, but its use is limited by its cardiotoxicity. To develop a drug that prevents this toxicity, we established a doxorubicin-induced cardiomyopathy model in zebrafish that recapitulates the cardiomyocyte apoptosis and contractility decline observed in patients. Using this model, we screened 3000 compounds and found that visnagin (VIS) and diphenylurea (DPU) rescue the cardiac performance and circulatory defects caused by doxorubicin in zebrafish. VIS and DPU reduced doxorubicin-induced apoptosis in cultured cardiomyocytes and in vivo in zebrafish and mouse hearts. VIS treatment improved cardiac contractility in doxorubicin-treated mice. Further, VIS and DPU did not reduce the chemotherapeutic efficacy of doxorubicin in several cultured tumor lines or in zebrafish and mouse xenograft models. Using affinity chromatography, we found that VIS binds to mitochondrial malate dehydrogenase (MDH2), a key enzyme in the tricarboxylic acid cycle. As with VIS, treatment with the MDH2 inhibitors mebendazole, thyroxine, and iodine prevented doxorubicin cardiotoxicity, as did treatment with malate itself, suggesting that modulation of MDH2 activity is responsible for VIS' cardioprotective effects. Thus, VIS and DPU are potent cardioprotective compounds, and MDH2 is a previously undescribed, druggable target for doxorubicin-induced cardiomyopathy.


Assuntos
Cardiomiopatias/tratamento farmacológico , Doxorrubicina/efeitos adversos , Coração/efeitos dos fármacos , Quelina/farmacologia , Malato Desidrogenase/metabolismo , Mitocôndrias/enzimologia , Animais , Antineoplásicos/efeitos adversos , Apoptose , Carbanilidas/farmacologia , Cardiomiopatias/induzido quimicamente , Cardiotônicos/farmacologia , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular , Miócitos Cardíacos/patologia , Transplante de Neoplasias , Peixe-Zebra
2.
J Biomol Screen ; 18(1): 108-15, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22960781

RESUMO

Organophosphates are a class of highly toxic chemicals that includes many pesticides and chemical weapons. Exposure to organophosphates, either through accidents or acts of terrorism, poses a significant risk to human health and safety. Existing antidotes, in use for over 50 years, have modest efficacy and undesirable toxicities. Therefore, discovering new organophosphate antidotes is a high priority. Early life stage zebrafish exposed to organophosphates exhibit several phenotypes that parallel the human response to organophosphates, including behavioral deficits, paralysis, and eventual death. Here, we have developed a high-throughput zebrafish screen in a 96-well plate format to find new antidotes that counteract organophosphate-induced lethality. In a pilot screen of 1200 known drugs, we identified 16 compounds that suppress organophosphate toxicity in zebrafish. Several in vitro assays coupled with liquid chromatography/tandem mass spectrometry-based metabolite profiling enabled determination of mechanisms of action for several of the antidotes, including reversible acetylcholinesterase inhibition, cholinergic receptor antagonism, and inhibition of bioactivation. Therefore, the in vivo screen is capable of discovering organophosphate antidotes that intervene in distinct pathways. These findings suggest that zebrafish screens might be a broadly applicable approach for discovering compounds that counteract the toxic effects of accidental or malicious poisonous exposures.


Assuntos
Antídotos/farmacologia , Ensaios de Triagem em Larga Escala , Organofosfatos/toxicidade , Paration/toxicidade , Animais , Atropina/farmacologia , Linhagem Celular Tumoral , Antagonistas Colinérgicos/farmacologia , Reativadores da Colinesterase/farmacologia , Avaliação Pré-Clínica de Medicamentos , Emetina/farmacologia , Glicopirrolato/farmacologia , Humanos , Dose Letal Mediana , Metoclopramida/farmacologia , Neostigmina/farmacologia , Pirenzepina/análogos & derivados , Pirenzepina/farmacologia , Compostos de Pralidoxima/farmacologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...