Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(17): 4737-4744, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38661142

RESUMO

Porphyrin nanoring has been attracting immense attention due to its light harvesting capacity and potential applications in optical, catalysis, sensor, and electronic devices. We demonstrate by nonadiabatic quantum dynamics simulations that the photovoltaic efficiency can be enhanced by template engineering. Altering the hexadentate template (T6) with two tridentate templates (2T3) within the porphyrin ring (P6) cavity accelerated the electron transfer twice and suppressed the electron-hole recombination by nearly three times. The atomistic tight-binding simulation rationalized the dynamics by different localizations of charge of the band edge states, changes in nonadiabatic coupling, alteration in quantum coherence, and involvement of diverse electron-phonon vibrational modes. Further 2T3 templates more strongly hold the P6 ring than T6, reducing the structural fluctuation. As a result, the nonadiabatic coupling becomes weaker and suppresses the carrier recombination. Current atomistic simulation presents a template engineering strategy to enhance the exciton lifetime along with ultrafast charge separation, crucial factors for photovoltaic applications.

2.
J Phys Chem Lett ; 14(50): 11384-11392, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38078872

RESUMO

Understanding the dynamics of photogenerated charge carriers is essential for enhancing the performance of solar and optoelectronic devices. Using atomistic quantum dynamics simulations, we demonstrate that a short π-conjugated optically active template can be used to control hot carrier relaxation, charge carrier separation, and carrier recombination in light-harvesting porphyrin nanorings. Relaxation of hot holes is slowed by 60% with an optically active template compared to that with an analogous optically inactive template. Both systems exhibit subpicosecond electron transfer from the photoactive core to the templates. Notably, charge recombination is suppressed 6-fold by the optically active template. The atomistic time-domain simulations rationalize these effects by the extent of electron and hole localization, modification of the density of states, participation of distinct vibrational motions, and changes in quantum coherence. Extension of the hot carrier lifetime and reduction of charge carrier recombination, without hampering charge separation, demonstrate a strategy for enhancing efficiencies of energy materials with optically active templates.

3.
ACS Nano ; 17(3): 2411-2420, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36706108

RESUMO

We measure the ultrafast spectral diffusion, vibronic dynamics, and energy relaxation of a CdSe colloidal quantum wells (CQWs) system at room temperature using two-dimensional electronic spectroscopy (2DES). The energy relaxation of light-hole (LH) excitons and hot carriers to heavy-hole (HH) excitons is resolved with a time scale of ∼210 fs. We observe the equilibration dynamics between the spectroscopically accessible HH excitonic state and a dark state with a time scale of ∼160 fs. We use the center line slope analysis to quantify the spectral diffusion dynamics in HH excitons, which contains an apparent sub-200 fs decay together with oscillatory features resolved at 4 and 25 meV. These observations can be explained by the coupling to various lattice phonon modes. We further perform quantum calculations that can replicate and explain the observed dynamics. The 4 meV mode is observed to be in the near-critically damped regime and may be mediating the transition between the bright and dark HH excitons. These findings show that 2DES can provide a comprehensive and detailed characterization of the ultrafast spectral properties in CQWs and similar nanomaterials.

4.
J Phys Chem Lett ; 13(31): 7213-7219, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35912962

RESUMO

Macromolecular porphyrin nanorings are receiving significant attention because of their excellent optoelectronic properties. However, their efficiencies as potential solar materials are significantly affected by nonradiative charge recombination. To understand the recombination mechanism by alternating structural parameters and using tight-binding nonadiabatic molecular dynamics, we demonstrate that charge recombination depends strongly on the mode of the linker in the porphyrin nanoring. The nanoring having all-butadiyne-linkage (pristine-P8) inhibits carrier relaxation. In contrast, a partially fused nanoring (fused-P8) expedites the rate of quantum transition. An extension of the lifetime by a factor of 4 is due to the larger optical gap in pristine-P8 that reduces the NA coupling by decreasing the overlap between band edge states. Additionally, an intense phonon peak in the low-frequency region and rapid coherence loss within the electronic subsystem favors prolonging the carrier lifetime. This study provides an atomistic realization for the design of macromolecular porphyrin nanorings for the potential use in photovoltaic materials.

5.
Life Sci Space Res (Amst) ; 31: 1-13, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34689941

RESUMO

The diverse near-Earth radiation environment due to cosmic rays and solar radiation has direct impact on human civilization. In the present and upcoming era of increasing air transfer, it is important to have precise idea of radiation dose effects on human body during air travel. Here, we calculate the radiation dose on the human body at the aviation altitude, also considering the shielding effect of the aircraft structure, using Monte Carlo simulation technique based on Geant4 toolkit. We consider proper 3D mathematical model of the atmosphere and geomagnetic field, updated profile of the incoming particle flux due to cosmic rays and appropriate physics processes. We use quasi-realistic computational phantoms to replicate the human body (male/female) for the effective dose calculation and develop a simplified mathematical model of the aircraft (taking Boeing 777-200LR as reference) for the shielding study. We simulate the radiation environment at the flying altitude (at 10 km and considering geomagnetic latitude in the range of 45-50°), as well as at various locations inside the fuselage of the aircraft. Then, we calculate the dose rates in the different organs for both male and female phantoms, based on latest recommendations of International Commission on Radio logical Protection. This calculation shows that the sex-averaged effective dose rate in human phantom is 5.46 µSv/h, whereas, if we calculate weighted sum of equivalent dose contributions separately in female and male body: total weighted sum of equivalent dose rate received by the female phantom is 5.72 µSv/h and that by the male phantom is 5.20 µSv/h. From the simulation, we also calculate the numerous cosmogenic radionuclides produced inside the phantoms through activation or spallation processes which may induce long-term biological effects.


Assuntos
Aviação , Radiação Cósmica , Exposição Ocupacional , Monitoramento de Radiação , Altitude , Radiação Cósmica/efeitos adversos , Feminino , Corpo Humano , Humanos , Masculino , Método de Monte Carlo , Doses de Radiação , Atividade Solar
6.
J Comput Chem ; 42(27): 1982-1990, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34390256

RESUMO

Recently, two-dimensional organic-inorganic hybrid perovskites have attracted great attention for their outstanding performances in solar energy conversion devices. By using first principles calculations, we explored the structural, electronic and optical properties of recently synthesized (PEA)2 PbI4 and (PEA)2 SnI4 organic-inorganic hybrid perovskites to understand the photovoltaic performances of these systems. Our study reveals that both the perovskites are direct band gap semiconductors and possess desirable band gap for solar energy absorption. We have further extended our study to fluoro-, chloro-, and bromo-functionalized phenethylammonium (PEA) cations based [X(X = F, Cl, Br)PEA]2 A(A = Pb, Sn)I4 perovskite materials. The halogenated benzene moiety confers an ultrahydrophobic character and protects the perovskites from ambient moisture. The halogen functionalized perovskites remain direct band gap semiconductors and all the perovskites show very strong optical absorption (∼7 × 105 cm-1 ) across UV-visible region. We have further calculated the photo-conversion efficiency (PCE) of both arene and functionalized arene based perovskites. The halogen-functionalized PEA-based perovskites also exhibit high PCE as like pristine ones and finally achieve high PCE of up to 24.30%, making them competitive with other previously reported perovskite-based photovoltaic devices.

7.
J Am Chem Soc ; 143(17): 6649-6656, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33896175

RESUMO

Carbon nanotubes (CNTs) are appealing candidates for solar and optoelectronic applications. Traditionally used as electron sinks, CNTs can also perform as electron donors, as exemplified by coupling with perylenediimide (PDI). To achieve high efficiencies, electron transfer (ET) should be fast, while subsequent charge recombination should be slow. Typically, defects are considered detrimental to material performance because they accelerate charge and energy losses. We demonstrate that, surprisingly, common CNT defects improve rather than deteriorate the performance. CNTs and other low dimensional materials accommodate moderate defects without creating deep traps. At the same time, charge redistribution caused by CNT defects creates an additional electrostatic potential that increases the CNT work function and lowers CNT energy levels relative to those of the acceptor species. Hence, the energy gap for the ET is decreased, while the gap for the charge recombination is increased. The effect is particularly important because charge acceptors tend to bind near defects due to enhanced chemical interactions. The time-domain simulation of the excited-state dynamics provides an atomistic picture of the observed phenomenon and characterizes in detail the electronic states, vibrational motions, inelastic and elastic electron-phonon interactions, and time scales of the charge separation and recombination processes. The findings should apply generally to low-dimensional materials, because they dissipate defect strain better than bulk semiconductors. Our calculations reveal that CNT performance is robust to common defects and that moderate defects are essential rather than detrimental for CNT application in energy, electronics, and related fields.

8.
Nanoscale Adv ; 2(4): 1502-1511, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36132296

RESUMO

Nonradiative electron-hole (e-h) recombination is the primary source of energy loss in photovoltaic cells and inevitably, it competes with the charge transfer process, leading to poor device performance. Therefore, much attention has to be paid for delaying such processes; increasing the excitonic lifetime may be a solution for this. Using the real-time, density functional tight-binding theory (DFTB) combined with nonadiabatic molecular dynamics (NAMD) simulations, we demonstrate the exciton relaxation phenomena of different metal-centered porphyrin nanoballs, which are supposed to be very important for the light-harvesting process. It has been revealed that the carrier recombination rate gradually decreases with the increase in the molecular stiffness by introducing metal-coordinating templating agents into the nanoball. Our simulation demonstrates that the lower atomic fluctuations lead to poorer electron-phonon nonadiabatic coupling in association with weak phonon modes and these as a whole are responsible for shorter quantum coherence and hence delayed recombination events. Our analysis is in good agreement with the recent experimental observation. By replacing the Zn metal center with a heavier Cd atom, a similar trend is observed; however, the rate slows down abruptly. The present simulation study provides the fundamental mechanism in detail behind the undesired energy loss during exciton recombination and suggests a rational design of impressive nanosystems for future device fabrication.

9.
Phys Chem Chem Phys ; 21(35): 19391-19402, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31455957

RESUMO

By using the state-of-the-art theoretical method, we herein explore the potentiality of covalently linked periodically-ordered 1D chain, 2D hexagonal and square ordered superstructures of CdTe QDs in photovoltaics. One of the major factors that controls the photovoltaic efficiency is the electron-hole recombination which in turn depends on the spatial separation of these charge carriers. Our theoretical findings show that the HOMO and LUMO states are localized at two different ends of the assembled superstructures. This result indicates large spatial separation of photoexcited charge carriers which prolongs the carrier lifetime and thus reduces the chance of electron-hole recombination. We have also attached an acceptor fullerene molecule with the CdTe QD superstructure and studied the electronic structure of the composite system. The photoexcited electrons of the assembled QDs potentially transfer to the low energy lying conduction band of fullerene and show a large spatial charge separation. The assembled QD-fullerene composites exhibit a high photoconversion efficiency of 19.3%, opening up new possibilities for designing efficient solar energy harvesting devices based on assembled QDs.

10.
Phys Chem Chem Phys ; 21(14): 7483-7490, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30892323

RESUMO

Gas phase hydrogenation of CO2 to HCO2- by coinage-metal hydride anions, MH- (M = Cu, Ag and Au), has been studied with the help of high level computational methodologies. We demonstrate that these hydride anions perform excellently in the specific hydrogenation of CO2 to HCO2-. More precisely, AgH- is shown to be very active for this particular purpose. We show that CO2 activation through the M-HCO2 pathway passes through a very low energy barrier and produces HCO2-; even the metal centered activation (H-MCO2) also leads to the same product through an energy barrier less than 15 kcal mol-1. A closer inspection demonstrates that electronegativity, size of the metal and hydricity of the MH- species control the overall hydrogenation process.

11.
J Phys Condens Matter ; 31(14): 145502, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30650400

RESUMO

Using first-principles calculations, we have studied the energetic feasibility and magnetic properties of transition metal (TM) doped PtSe2 monolayers. Our study shows that TM doped PtSe2 layers with 6.25% doping exhibit versatile spintronic behaviour depending on the nature of the dopant TM atoms. Groups IVB and VIII10 TM doped PtSe2 layers are non magnetic semiconductors, while groups IIIB, VB, VIII8, VIII9, IB TM doped PtSe2 layers are half-metals and finally, groups VIB, VIIB and IIB TM doped PtSe2 layers are spin polarized semiconductors. The presence of half-metallic and magnetic semiconducting characteristics suggest that TM doped PtSe2 layers can be considered as a new kind of dilute magnetic semiconductor and thus have the promise to be used in spintronics. By studying the magnetic interactions between two TM dopants in PtSe2 monolayers for dopant concentration of 12.5% and dopant distance of 12.85 [Formula: see text], we have found that in particular, Fe and Ru doped PtSe2 systems are ferromagnetic half-metal having above-room-temperature Curie point of 422 and 379.9 K, respectively. By varying the dopant distance and concentration we have shown that the magnetic interaction is strongly dependent on dopant distance and concentration. Interestingly, the Curie temperature of TM doped PtSe2 layers is affected by the correlation effects on the TM d states and also spin-orbit coupling. We have also studied the magnetic properties of defect complex composed of one TM dopant and one Pt vacancy (TMPt + VPt) which shows novel magnetism.

12.
Nanoscale ; 10(26): 12683-12694, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29946626

RESUMO

The versatile photochemical properties of porphyrin molecules make them excellent candidates for solar energy applications. Carbon nanotubes (CNTs) exhibit superior charge conductivity and have been combined with porphyrins to achieve efficient and ultrafast charge separation. Experiments show that the charge separated state lives less than 10 ps, which is too short for applications. Using real-time time-dependent tight binding density functional theory (DFTB) combined with non-adiabatic molecular dynamics (NAMD), we model photo-induced charge separation and recombination in two porphyrin/CNT composites. Having achieved excellent agreement with the experiment for the electron transfer from the porphyrins to the CNT, we demonstrate that hole transfer can be achieved upon CNT excitation, although in a less efficient way. By exciting the CNT one can extend light harvesting into lower energies of the solar spectrum and increase solar light conversion efficiency. We also show that the charge separated state can live over 1 ns. The two orders of magnitude difference from the experimental lifetime could arise due to the presence of defects or metallic tubes in the samples. The charge separated state is long-lived because the non-adiabatic electron-phonon coupling is very small, less than 1 meV, and the quantum coherence is short, 15-20 fs. The excited states in the isolated porphyrins and CNT live around 100 ps, in agreement with experiments as well. The porphyrin/CNT interaction occurs through the π-electron systems of the two species. The non-radiative relaxation is promoted by both high and low frequency phonons, with higher frequency phonons playing more important roles in electron relaxation than in hole relaxation. Low frequency phonons contribute significantly to the decay of the charge separated state, because they modulate the relative positions of the porphyrins and the CNT. The time-domain atomistic simulations provide a detailed understanding of the charge separation and recombination mechanisms, and generate valuable guidelines for the optimization of photovoltaic efficiency in modern nanoscale materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...