Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 6(14): eaax0069, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32284968

RESUMO

Hypertrophic cardiomyopathy (HCM) mutations in ß-cardiac myosin and myosin binding protein-C (MyBP-C) lead to hypercontractility of the heart, an early hallmark of HCM. We show that hypercontractility caused by the HCM-causing mutation R663H cannot be explained by changes in fundamental myosin contractile parameters, much like the HCM-causing mutation R403Q. Using enzymatic assays with purified human ß-cardiac myosin, we provide evidence that both mutations cause hypercontractility by increasing the number of functionally accessible myosin heads. We also demonstrate that the myosin mutation R403Q, but not R663H, ablates the binding of myosin with the C0-C7 fragment of MyBP-C. Furthermore, addition of C0-C7 decreases the wild-type myosin basal ATPase single turnover rate, while the mutants do not show a similar reduction. These data suggest that a primary mechanism of action for these mutations is to increase the number of myosin heads functionally available for interaction with actin, which could contribute to hypercontractility.


Assuntos
Actinas/metabolismo , Alelos , Substituição de Aminoácidos , Cardiomiopatia Hipertrófica/genética , Mutação , Miosinas/genética , Miosinas/metabolismo , Actinas/química , Sítios de Ligação , Cardiomiopatia Hipertrófica/fisiopatologia , Predisposição Genética para Doença , Humanos , Modelos Moleculares , Contração Miocárdica/genética , Miosinas/química , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Miosinas Ventriculares/genética
2.
Nat Commun ; 10(1): 2685, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31213605

RESUMO

Hypertrophic cardiomyopathy (HCM) affects 1 in 500 people and leads to hyper-contractility of the heart. Nearly 40 percent of HCM-causing mutations are found in human ß-cardiac myosin. Previous studies looking at the effect of HCM mutations on the force, velocity and ATPase activity of the catalytic domain of human ß-cardiac myosin have not shown clear trends leading to hypercontractility at the molecular scale. Here we present functional data showing that four separate HCM mutations located at the myosin head-tail (R249Q, H251N) and head-head (D382Y, R719W) interfaces of a folded-back sequestered state referred to as the interacting heads motif (IHM) lead to a significant increase in the number of heads functionally accessible for interaction with actin. These results provide evidence that HCM mutations can modulate myosin activity by disrupting intramolecular interactions within the proposed sequestered state, which could lead to hypercontractility at the molecular level.


Assuntos
Miosinas Cardíacas/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Contração Miocárdica/genética , Cadeias Pesadas de Miosina/metabolismo , Actinas/metabolismo , Animais , Miosinas Cardíacas/genética , Linhagem Celular , Movimento Celular/genética , Coração/fisiopatologia , Humanos , Camundongos , Mutação , Mioblastos , Cadeias Pesadas de Miosina/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(35): E8143-E8152, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30104387

RESUMO

Mutations in ß-cardiac myosin, the predominant motor protein for human heart contraction, can alter power output and cause cardiomyopathy. However, measurements of the intrinsic force, velocity, and ATPase activity of myosin have not provided a consistent mechanism to link mutations to muscle pathology. An alternative model posits that mutations in myosin affect the stability of a sequestered, super relaxed state (SRX) of the protein with very slow ATP hydrolysis and thereby change the number of myosin heads accessible to actin. Here we show that purified human ß-cardiac myosin exists partly in an SRX and may in part correspond to a folded-back conformation of myosin heads observed in muscle fibers around the thick filament backbone. Mutations that cause hypertrophic cardiomyopathy destabilize this state, while the small molecule mavacamten promotes it. These findings provide a biochemical and structural link between the genetics and physiology of cardiomyopathy with implications for therapeutic strategies.


Assuntos
Benzilaminas/química , Uracila/análogos & derivados , Miosinas Ventriculares/química , Animais , Benzilaminas/farmacologia , Cardiomegalia/enzimologia , Cardiomegalia/genética , Humanos , Músculo Esquelético/enzimologia , Mutação , Suínos , Porco Miniatura , Uracila/química , Uracila/farmacologia , Miosinas Ventriculares/genética , Miosinas Ventriculares/metabolismo
4.
Biophys Rev ; 10(1): 27-48, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28717924

RESUMO

The sarcomere is an exquisitely designed apparatus that is capable of generating force, which in the case of the heart results in the pumping of blood throughout the body. At the molecular level, an ATP-dependent interaction of myosin with actin drives the contraction and force generation of the sarcomere. Over the past six decades, work on muscle has yielded tremendous insights into the workings of the sarcomeric system. We now stand on the cusp where the acquired knowledge of how the sarcomere contracts and how that contraction is regulated can be extended to an understanding of the molecular mechanisms of sarcomeric diseases, such as hypertrophic cardiomyopathy (HCM). In this review we present a picture that combines current knowledge of the myosin mesa, the sequestered state of myosin heads on the thick filament, known as the interacting-heads motif (IHM), their possible interaction with myosin binding protein C (MyBP-C) and how these interactions can be abrogated leading to hyper-contractility, a key clinical manifestation of HCM. We discuss the structural and functional basis of the IHM state of the myosin heads and identify HCM-causing mutations that can directly impact the equilibrium between the 'on state' of the myosin heads (the open state) and the IHM 'off state'. We also hypothesize a role of MyBP-C in helping to maintain myosin heads in the IHM state on the thick filament, allowing release in a graded manner upon adrenergic stimulation. By viewing clinical hyper-contractility as the result of the destabilization of the IHM state, our aim is to view an old disease in a new light.

5.
Nat Struct Mol Biol ; 24(6): 525-533, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28481356

RESUMO

Hypertrophic cardiomyopathy (HCM) is primarily caused by mutations in ß-cardiac myosin and myosin-binding protein-C (MyBP-C). Changes in the contractile parameters of myosin measured so far do not explain the clinical hypercontractility caused by such mutations. We propose that hypercontractility is due to an increase in the number of myosin heads (S1) that are accessible for force production. In support of this hypothesis, we demonstrate myosin tail (S2)-dependent functional regulation of actin-activated human ß-cardiac myosin ATPase. In addition, we show that both S2 and MyBP-C bind to S1 and that phosphorylation of either S1 or MyBP-C weakens these interactions. Importantly, the S1-S2 interaction is also weakened by four myosin HCM-causing mutations but not by two other mutations. To explain these experimental results, we propose a working structural model involving multiple interactions, including those with myosin's own S2 and MyBP-C, that hold myosin in a sequestered state.


Assuntos
Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Mutação , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Humanos , Modelos Biológicos , Contração Miocárdica
6.
Sci Adv ; 3(2): e1601959, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28246639

RESUMO

Hypertrophic cardiomyopathy (HCM) affects 1 in 500 individuals and is an important cause of arrhythmias and heart failure. Clinically, HCM is characterized as causing hypercontractility, and therapies are aimed toward controlling the hyperactive physiology. Mutations in the ß-cardiac myosin comprise ~40% of genetic mutations associated with HCM, and the converter domain of myosin is a hotspot for HCM-causing mutations; however, the underlying primary effects of these mutations on myosin's biomechanical function remain elusive. We hypothesize that these mutations affect the biomechanical properties of myosin, such as increasing its intrinsic force and/or its duty ratio and therefore the ensemble force of the sarcomere. Using recombinant human ß-cardiac myosin, we characterize the molecular effects of three severe HCM-causing converter domain mutations: R719W, R723G, and G741R. Contrary to our hypothesis, the intrinsic forces of R719W and R723G mutant myosins are decreased compared to wild type and unchanged for G741R. Actin and regulated thin filament gliding velocities are ~15% faster for R719W and R723G myosins, whereas there is no change in velocity for G741R. Adenosine triphosphatase activities and the load-dependent velocity change profiles of all three mutant proteins are very similar to those of wild type. These results indicate that the net biomechanical properties of human ß-cardiac myosin carrying these converter domain mutations are very similar to those of wild type or are even slightly hypocontractile, leading us to consider an alternative mechanism for the clinically observed hypercontractility. Future work includes how these mutations affect protein interactions within the sarcomere that increase the availability of myosin heads participating in force production.


Assuntos
Cardiomegalia , Doenças Genéticas Inatas , Miosinas Ventriculares/química , Substituição de Aminoácidos , Humanos , Mutação de Sentido Incorreto , Miosinas Ventriculares/genética , Miosinas Ventriculares/metabolismo
7.
Cell Rep ; 17(11): 2857-2864, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27974200

RESUMO

Hypertrophic cardiomyopathy (HCM) is a heritable cardiovascular disorder that affects 1 in 500 people. A significant percentage of HCM is attributed to mutations in ß-cardiac myosin, the motor protein that powers ventricular contraction. This study reports how two early-onset HCM mutations, D239N and H251N, affect the molecular biomechanics of human ß-cardiac myosin. We observed significant increases (20%-90%) in actin gliding velocity, intrinsic force, and ATPase activity in comparison to wild-type myosin. Moreover, for H251N, we found significantly lower binding affinity between the S1 and S2 domains of myosin, suggesting that this mutation may further increase hyper-contractility by releasing active motors. Unlike previous HCM mutations studied at the molecular level using human ß-cardiac myosin, early-onset HCM mutations lead to significantly larger changes in the fundamental biomechanical parameters and show clear hyper-contractility.


Assuntos
Actinas/genética , Cardiomiopatia Hipertrófica/genética , Proteínas Motores Moleculares/genética , Miosinas Ventriculares/genética , Actinas/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Cardiomiopatia Hipertrófica/fisiopatologia , Genótipo , Humanos , Mutação , Contração Miocárdica/genética , Miosinas Ventriculares/química , Miosinas Ventriculares/metabolismo
8.
J Exp Biol ; 219(Pt 2): 161-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26792326

RESUMO

Hypertrophic cardiomyopathy is the most frequently occurring inherited cardiovascular disease, with a prevalence of more than one in 500 individuals worldwide. Genetically acquired dilated cardiomyopathy is a related disease that is less prevalent. Both are caused by mutations in the genes encoding the fundamental force-generating protein machinery of the cardiac muscle sarcomere, including human ß-cardiac myosin, the motor protein that powers ventricular contraction. Despite numerous studies, most performed with non-human or non-cardiac myosin, there is no clear consensus about the mechanism of action of these mutations on the function of human ß-cardiac myosin. We are using a recombinantly expressed human ß-cardiac myosin motor domain along with conventional and new methodologies to characterize the forces and velocities of the mutant myosins compared with wild type. Our studies are extending beyond myosin interactions with pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin, the roles of regulatory light chain phosphorylation on the functions of the system, and the possible roles of myosin binding protein-C and titin, important regulatory components of both cardiac and skeletal muscles.


Assuntos
Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/fisiopatologia , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Mutação/genética , Miosinas Ventriculares/genética , Fenômenos Biomecânicos/genética , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...