Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517470

RESUMO

Interferon regulatory factor 1 (IRF1) can promote antitumor immunity. However, we have shown previously that in the tumor cell, IRF1 can promote tumor growth, and IRF1-deficient tumor cells exhibit severely restricted tumor growth in several syngeneic mouse tumor models. Here, we investigate the potential of functionally modulating IRF1 to reduce tumor progression and prolong survival. Using inducible IRF1 expression, we established that it is possible to regulate IRF1 expression to modulate tumor progression in established B16-F10 tumors. Expression of IRF2, which is a functional antagonist of IRF1, down-regulated IFN-induced expression of inhibitory ligands, up-regulated MHC-related molecules, and slowed tumor growth and extended survival. We characterized the functional domain(s) of IRF2 needed for this antitumor activity, showing that a full-length IRF2 was required for its antitumor functions. Finally, using an oncolytic vaccinia virus as a delivery platform, we showed that IRF2-expressing vaccinia virus suppressed tumor progression and prolonged survival in multiple tumor models. These results suggest the potency of targeting IRF1 and using IRF2 to modulate immunotherapy.

2.
Immunity ; 57(3): 446-461.e7, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38423012

RESUMO

In response to viral infection, how cells balance translational shutdown to limit viral replication and the induction of antiviral components like interferons (IFNs) is not well understood. Moreover, how distinct isoforms of IFN-induced oligoadenylate synthetase 1 (OAS1) contribute to this antiviral response also requires further elucidation. Here, we show that human, but not mouse, OAS1 inhibits SARS-CoV-2 replication through its canonical enzyme activity via RNase L. In contrast, both mouse and human OAS1 protect against West Nile virus infection by a mechanism distinct from canonical RNase L activation. OAS1 binds AU-rich elements (AREs) of specific mRNAs, including IFNß. This binding leads to the sequestration of IFNß mRNA to the endomembrane regions, resulting in prolonged half-life and continued translation. Thus, OAS1 is an ARE-binding protein with two mechanisms of antiviral activity: driving inhibition of translation but also a broader, non-canonical function of protecting IFN expression from translational shutdown.


Assuntos
Interferons , Oligorribonucleotídeos , Viroses , Animais , Humanos , Camundongos , Nucleotídeos de Adenina , Antivirais/farmacologia , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo
3.
PLoS Pathog ; 20(2): e1011840, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38315735

RESUMO

Human metapneumovirus (HMPV) is an important cause of acute lower respiratory infection in children and adults worldwide. There are four genetic subgroups of HMPV and both neutralizing antibodies and T cells contribute to protection. However, little is known about mechanisms of pathogenesis and most published work is based on a few extensively passaged, laboratory-adapted strains of HMPV. In this study, we isolated and characterized a panel of low passage HMPV clinical isolates representing all four genetic subgroups. The clinical isolates exhibited lower levels of in vitro replication compared to a lab-adapted strain. We compared disease phenotypes using a well-established mouse model. Several virulent isolates caused severe weight loss, lung pathology, airway dysfunction, and fatal disease in mice, which was confirmed in three inbred mouse strains. Disease severity did not correlate with lung viral titer, as virulent strains exhibited restricted replication in the lower airway. Virulent HMPV isolates were associated with markedly increased proinflammatory cytokine production and neutrophil influx; however, depletion of neutrophils or genetic ablation of inflammasome components did not reverse disease. Virulent clinical isolates induced markedly increased type I and type III interferon (IFN) secretion in vitro and in vivo. STAT1/2-deficient mice lacking both type I and type III IFN signaling showed reduced disease severity and increased lung viral replication. Inhibition of type I IFN signaling using a blocking antibody or genetic ablation of the type I IFN receptor reduced pathology with minimal effect on viral replication. Conversely, blockade of type III IFN signaling with a neutralizing antibody or genetic ablation of the IFN-lambda receptor had no effect on pathogenesis but restored viral replication. Collectively, these results demonstrate distinct roles for type I and type III IFN in HMPV pathogenesis and immunity.


Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Infecções Respiratórias , Criança , Animais , Camundongos , Humanos , Interferon lambda , Pulmão , Infecções Respiratórias/patologia , Interferons
4.
J Interferon Cytokine Res ; 43(11): 487-494, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37751211

RESUMO

2'-5' Oligoadenylate synthetases (OAS) are interferon-stimulated genes that are most well-known to protect hosts from viral infections. They are evolutionarily related to an ancient family of Nucleotidyltransferases, which are primarily involved in pathogen-sensing and innate immune response. Classical function of OAS proteins involves double-stranded RNA-stimulated polymerization of adenosine triphosphate in 2'-5' oligoadenylates (2-5A), which can activate the latent RNase (RNase L) to degrade RNA. However, accumulated evidence over the years have suggested alternative mode of antiviral function of several OAS family proteins. Furthermore, recent studies have connected some OAS proteins with wider function beyond viral infection. Here, we review some of the canonical and noncanonical functions of OAS proteins and their mechanisms.


Assuntos
RNA de Cadeia Dupla , Viroses , Humanos , Interferons/genética , Nucleotídeos de Adenina , Oligorribonucleotídeos , Endorribonucleases/genética , Endorribonucleases/metabolismo , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo
5.
Elife ; 102021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34342578

RESUMO

Many host RNA sensors are positioned in the cytosol to detect viral RNA during infection. However, most positive-strand RNA viruses replicate within a modified organelle co-opted from intracellular membranes of the endomembrane system, which shields viral products from cellular innate immune sensors. Targeting innate RNA sensors to the endomembrane system may enhance their ability to sense RNA generated by viruses that use these compartments for replication. Here, we reveal that an isoform of oligoadenylate synthetase 1, OAS1 p46, is prenylated and targeted to the endomembrane system. Membrane localization of OAS1 p46 confers enhanced access to viral replication sites and results in increased antiviral activity against a subset of RNA viruses including flaviviruses, picornaviruses, and SARS-CoV-2. Finally, our human genetic analysis shows that the OAS1 splice-site SNP responsible for production of the OAS1 p46 isoform correlates with protection from severe COVID-19. This study highlights the importance of endomembrane targeting for the antiviral specificity of OAS1 and suggests that early control of SARS-CoV-2 replication through OAS1 p46 is an important determinant of COVID-19 severity.


Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , COVID-19/virologia , SARS-CoV-2/metabolismo , Animais , COVID-19/imunologia , Sistemas CRISPR-Cas , Linhagem Celular , Edição de Genes , Humanos , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/isolamento & purificação
8.
Immunity ; 51(3): 548-560.e4, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31471106

RESUMO

Immunotherapy can reinvigorate dormant responses to cancer, but response rates remain low. Oncolytic viruses, which replicate in cancer cells, induce tumor lysis and immune priming, but their immune consequences are unclear. We profiled the infiltrate of aggressive melanomas induced by oncolytic Vaccinia virus using RNA sequencing and found substantial remodeling of the tumor microenvironment, dominated by effector T cell influx. However, responses to oncolytic viruses were incomplete due to metabolic insufficiencies induced by the tumor microenvironment. We identified the adipokine leptin as a potent metabolic reprogramming agent that supported antitumor responses. Leptin metabolically reprogrammed T cells in vitro, and melanoma cells expressing leptin were immunologically controlled in mice. Engineering oncolytic viruses to express leptin in tumor cells induced complete responses in tumor-bearing mice and supported memory development in the tumor infiltrate. Thus, leptin can provide metabolic support to tumor immunity, and oncolytic viruses represent a platform to deliver metabolic therapy.


Assuntos
Leptina/imunologia , Melanoma/imunologia , Vírus Oncolíticos/imunologia , Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Imunoterapia/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral/imunologia , Vaccinia virus/imunologia
9.
Immunity ; 51(3): 451-464.e6, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31471108

RESUMO

Type I and III interferons (IFNs) activate similar downstream signaling cascades, but unlike type I IFNs, type III IFNs (IFNλ) do not elicit strong inflammatory responses in vivo. Here, we examined the molecular mechanisms underlying this disparity. Type I and III IFNs displayed kinetic differences in expression of IFN-stimulated genes and proinflammatory responses, with type I IFNs preferentially stimulating expression of the transcription factor IRF1. Type III IFNs failed to induce IRF1 expression because of low IFNλ receptor abundance and insufficient STAT1 activation on epithelial cells and thus did not activate the IRF1 proinflammatory gene program. Rather, IFNλ stimulation preferentially induced factors implicated in tissue repair. Our findings suggest that IFN receptor compartmentalization and abundance confer a spatiotemporal division of labor where type III IFNs control viral spread at the site of the infection while restricting tissue damage; the transient induction of inflammatory responses by type I IFNs recruits immune effectors to promote protective immunity.


Assuntos
Fator Regulador 1 de Interferon/imunologia , Interferon Tipo I/imunologia , Interferons/imunologia , Animais , Linhagem Celular , Células Epiteliais/imunologia , Humanos , Inflamação/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT1/imunologia , Interferon lambda
10.
Mol Cell ; 76(1): 11-26.e7, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31400850

RESUMO

Alternative lengthening of telomeres (ALT) is a homology-directed repair (HDR) mechanism of telomere elongation that controls proliferation in aggressive cancers. We show that the disruption of RAD51-associated protein 1 (RAD51AP1) in ALT+ cancer cells leads to generational telomere shortening. This is due to RAD51AP1's involvement in RAD51-dependent homologous recombination (HR) and RAD52-POLD3-dependent break induced DNA synthesis. RAD51AP1 KO ALT+ cells exhibit telomere dysfunction and cytosolic telomeric DNA fragments that are sensed by cGAS. Intriguingly, they activate ULK1-ATG7-dependent autophagy as a survival mechanism to mitigate DNA damage and apoptosis. Importantly, RAD51AP1 protein levels are elevated in ALT+ cells due to MMS21 associated SUMOylation. Mutation of a single SUMO-targeted lysine residue perturbs telomere dynamics. These findings indicate that RAD51AP1 is an essential mediator of the ALT mechanism and is co-opted by post-translational mechanisms to maintain telomere length and ensure proliferation of ALT+ cancer cells.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Neoplasias/metabolismo , Proteínas de Ligação a RNA/metabolismo , Homeostase do Telômero , Telômero/metabolismo , Autofagia , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proliferação de Células , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Recombinação Homóloga , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligases/genética , Ligases/metabolismo , Lisina , Neoplasias/genética , Neoplasias/patologia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Estabilidade Proteica , Proteínas de Ligação a RNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Transdução de Sinais , Sumoilação , Telômero/genética , Telômero/patologia
11.
Cancer Immunol Res ; 7(8): 1258-1266, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31239318

RESUMO

Multiple studies have associated the transcription factor IRF1 with tumor-suppressive activities. Here, we report an opposite tumor cell-intrinsic function of IRF1 in promoting tumor growth. IRF1-deficient tumor cells showed reduced tumor growth in MC38 and CT26 colon carcinoma and B16 melanoma mouse models. This reduction in tumor growth was dependent on host CD8+ T cells. Detailed profiling of tumor-infiltrating leukocytes did not show changes in the various T-cell and myeloid cell populations. However, CD8+ T cells that had infiltrated IRF1-deficieint tumors in vivo exhibited enhanced cytotoxicity. IRF1-deficient tumor cells lost the ability to upregulate PD-L1 expression in vitro and in vivo and were more susceptible to T-cell-mediated killing. Induced expression of PD-L1 in IRF1-deficient tumor cells restored tumor growth. These results indicate differential activity of IRF1 in tumor escape.


Assuntos
Antígeno B7-H1/genética , Regulação Neoplásica da Expressão Gênica , Imunomodulação , Fator Regulador 1 de Interferon/metabolismo , Animais , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Humanos , Memória Imunológica , Imunomodulação/genética , Fator Regulador 1 de Interferon/genética , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Melanoma Experimental , Camundongos , Camundongos Knockout , Linfócitos T/imunologia , Linfócitos T/metabolismo
12.
Immunity ; 50(1): 51-63.e5, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30635239

RESUMO

Interferon-inducible human oligoadenylate synthetase-like (OASL) and its mouse ortholog, Oasl2, enhance RNA-sensor RIG-I-mediated type I interferon (IFN) induction and inhibit RNA virus replication. Here, we show that OASL and Oasl2 have the opposite effect in the context of DNA virus infection. In Oasl2-/- mice and OASL-deficient human cells, DNA viruses such as vaccinia, herpes simplex, and adenovirus induced increased IFN production, which resulted in reduced virus replication and pathology. Correspondingly, ectopic expression of OASL in human cells inhibited IFN induction through the cGAS-STING DNA-sensing pathway. cGAS was necessary for the reduced DNA virus replication observed in OASL-deficient cells. OASL directly and specifically bound to cGAS independently of double-stranded DNA, resulting in a non-competitive inhibition of the second messenger cyclic GMP-AMP production. Our findings define distinct mechanisms by which OASL differentially regulates host IFN responses during RNA and DNA virus infection and identify OASL as a negative-feedback regulator of cGAS.


Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , Infecções por Vírus de DNA/imunologia , Vírus de DNA/fisiologia , Infecções por Vírus de RNA/imunologia , Vírus de RNA/imunologia , 2',5'-Oligoadenilato Sintetase/genética , Animais , AMP Cíclico/metabolismo , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nucleotidiltransferases/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais , Células THP-1 , Replicação Viral
13.
J Theor Biol ; 462: 148-157, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30395807

RESUMO

Cyclic GMP-AMP synthase (cGAS) has recently been identified as the primary protein that detects cytosolic double stranded DNA to invoke a type I interferon response. The cGAS pathway is vital in the recognition of DNA encoded viruses as well as self-DNA leaked from the nucleus of damaged cells. Currently, the dynamics regulating the cGAS pathway are poorly understood; limiting our knowledge of how DNA-induced immune responses are regulated. Using systems biology approaches, we formulated a mathematical model to describe the dynamics of this pathway and examine the resulting system-level emergent properties. Unknown model parameters were fit to data compiled from literature using a Parallel Tempering Markov Chain Monte Carlo (PT-MCMC) approach, resulting in an ensemble of parameterized models. A local sensitivity analysis demonstrated that parameter sensitivity trends across model ensembles were independent of the select parameterization. An in-silico knock-down of TREX1 found that the interferon response is highly robust, showing that complete inhibition is necessary to induce chemical conditions consistent with chronic inflammation. Lastly, we demonstrate that the model recapitulates interferon expression data resulting from small molecule inhibition of cGAS. Overall, the importance of this model is exhibited in its capacity to identify sensitive components of the cGAS pathway, generate testable hypotheses, and confirm experimental observations.


Assuntos
DNA/imunologia , Exodesoxirribonucleases/metabolismo , Modelos Teóricos , Nucleotidiltransferases/metabolismo , Fosfoproteínas/metabolismo , Animais , DNA Viral/imunologia , Retroalimentação , Humanos , Inflamação , Interferon Tipo I/metabolismo , Cadeias de Markov , Método de Monte Carlo , Biologia de Sistemas/métodos
14.
Immunity ; 49(3): 413-426.e5, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30170814

RESUMO

Inflammasome-activated caspase-1 cleaves gasdermin D to unmask its pore-forming activity, the predominant consequence of which is pyroptosis. Here, we report an additional biological role for gasdermin D in limiting cytosolic DNA surveillance. Cytosolic DNA is sensed by Aim2 and cyclic GMP-AMP synthase (cGAS) leading to inflammasome and type I interferon responses, respectively. We found that gasdermin D activated by the Aim2 inflammasome suppressed cGAS-driven type I interferon response to cytosolic DNA and Francisella novicida in macrophages. Similarly, interferon-ß (IFN-ß) response to F. novicida infection was elevated in gasdermin D-deficient mice. Gasdermin D-mediated negative regulation of IFN-ß occurred in a pyroptosis-, interleukin-1 (IL-1)-, and IL-18-independent manner. Mechanistically, gasdermin D depleted intracellular potassium (K+) via membrane pores, and this K+ efflux was necessary and sufficient to inhibit cGAS-dependent IFN-ß response. Thus, our findings have uncovered an additional interferon regulatory module involving gasdermin D and K+ efflux.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Francisella/fisiologia , Infecções por Bactérias Gram-Negativas/imunologia , Inflamassomos/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Humanos , Interferon Tipo I/metabolismo , Interleucina-1/metabolismo , Interleucina-18/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Proteínas de Ligação a Fosfato , Potássio/metabolismo , RNA Interferente Pequeno/genética
15.
Cancer Res ; 78(15): 4292-4302, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29853604

RESUMO

Presence of cytotoxic CD8+ T cells (CTL) in tumor microenvironments (TME) is critical for the effectiveness of immune therapies and patients' outcome, whereas regulatory T(reg) cells promote cancer progression. Immune adjuvants, including double-stranded (ds)RNAs, which signal via Toll-like receptor-3 (TLR3) and helicase (RIG-I/MDA5) pathways, all induce intratumoral production of CTL-attractants, but also Treg attractants and suppressive factors, raising the question of whether induction of these opposing groups of immune mediators can be separated. Here, we use human tumor explant cultures and cell culture models to show that the (ds) RNA Sendai Virus (SeV), poly-I:C, and rintatolimod (poly-I:C12U) all activate the TLR3 pathway involving TRAF3 and IRF3, and induce IFNα, ISG-60, and CXCL10 to promote CTL chemotaxis to ex vivo-treated tumors. However, in contrast with SeV and poly I:C, rintatolimod did not activate the MAVS/helicase pathway, thus avoiding NFκB- and TNFα-dependent induction of COX2, COX2/PGE2-dependent induction of IDO, IL10, CCL22, and CXCL12, and eliminating Treg attraction. Induction of CTL-attractants by either poly I:C or rintatolimod was further enhanced by exogenous IFNα (enhancer of TLR3 expression), whereas COX2 inhibition enhanced the response to poly-I:C only. Our data identify the helicase/NFκB/TNFα/COX2 axis as the key suppressive pathway of dsRNA signaling in human TME and suggest that selective targeting of TLR3 or elimination of NFκB/TNFα/COX2-driven suppression may allow for selective enhancement of type-1 immunity.Significance: This study characterizes two different poly-I:C-induced signaling pathways in their induction of immunostimulatory and suppressive factors and suggests improved ways to reprogram the TME to enhance the antitumor efficacy of immunotherapies. Cancer Res; 78(15); 4292-302. ©2018 AACR.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Tolerância Imunológica/imunologia , Inflamação/imunologia , NF-kappa B/metabolismo , RNA Helicases/metabolismo , RNA de Cadeia Dupla/metabolismo , Microambiente Tumoral/imunologia , Adulto , Idoso , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Ciclo-Oxigenase 2/imunologia , Feminino , Humanos , Inflamação/metabolismo , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 3 de Interferon/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , NF-kappa B/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/metabolismo , RNA Helicases/imunologia , RNA de Cadeia Dupla/imunologia , Ratos , Transdução de Sinais/imunologia , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
16.
J Clin Invest ; 128(9): 3926-3940, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-29952768

RESUMO

DNA-damaging chemotherapy and radiation therapy are integrated into the treatment paradigm of the majority of cancer patients. Recently, immunotherapy that targets the immunosuppressive interaction between programmed death 1 (PD-1) and its ligand PD-L1 has been approved for malignancies including non-small cell lung cancer, melanoma, and head and neck squamous cell carcinoma. ATR is a DNA damage-signaling kinase activated at damaged replication forks, and ATR kinase inhibitors potentiate the cytotoxicity of DNA-damaging chemotherapies. We show here that the ATR kinase inhibitor AZD6738 combines with conformal radiation therapy to attenuate radiation-induced CD8+ T cell exhaustion and potentiate CD8+ T cell activity in mouse models of Kras-mutant cancer. Mechanistically, AZD6738 blocks radiation-induced PD-L1 upregulation on tumor cells and dramatically decreases the number of tumor-infiltrating Tregs. Remarkably, AZD6738 combines with conformal radiation therapy to generate immunologic memory in complete responder mice. Our work raises the possibility that a single pharmacologic agent may enhance the cytotoxic effects of radiation while concurrently potentiating radiation-induced antitumor immune responses.


Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos da radiação , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/radioterapia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Sulfóxidos/farmacologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/radioterapia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Quimiorradioterapia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/radioterapia , Humanos , Indóis , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/efeitos da radiação , Camundongos , Camundongos Endogâmicos BALB C , Morfolinas , Neoplasias Experimentais/imunologia , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas p21(ras)/genética , Pirimidinas/farmacocinética , Radioterapia Conformacional , Sulfonamidas , Sulfóxidos/farmacocinética
17.
NPJ Schizophr ; 2: 16012, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27336055

RESUMO

Genome-wide association studies of schizophrenia (GWAS) have revealed the role of rare and common genetic variants, but the functional effects of the risk variants remain to be understood. Protein interactome-based studies can facilitate the study of molecular mechanisms by which the risk genes relate to schizophrenia (SZ) genesis, but protein-protein interactions (PPIs) are unknown for many of the liability genes. We developed a computational model to discover PPIs, which is found to be highly accurate according to computational evaluations and experimental validations of selected PPIs. We present here, 365 novel PPIs of liability genes identified by the SZ Working Group of the Psychiatric Genomics Consortium (PGC). Seventeen genes that had no previously known interactions have 57 novel interactions by our method. Among the new interactors are 19 drug targets that are targeted by 130 drugs. In addition, we computed 147 novel PPIs of 25 candidate genes investigated in the pre-GWAS era. While there is little overlap between the GWAS genes and the pre-GWAS genes, the interactomes reveal that they largely belong to the same pathways, thus reconciling the apparent disparities between the GWAS and prior gene association studies. The interactome including 504 novel PPIs overall, could motivate other systems biology studies and trials with repurposed drugs. The PPIs are made available on a webserver, called Schizo-Pi at http://severus.dbmi.pitt.edu/schizo-pi with advanced search capabilities.

18.
J Immunol ; 196(9): 3877-86, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27016603

RESUMO

Moloney leukemia virus 10, homolog (MOV10) is an IFN-inducible RNA helicase, associated with small RNA-induced silencing. In this article, we report that MOV10 exhibits antiviral activity, independent of its helicase function, against a number of positive- and negative-strand RNA viruses by enhancing type I IFN induction. Using a number of genome-edited knockout human cells, we show that IFN regulatory factor 3-mediated IFN induction and downstream IFN signaling through IFN receptor was necessary to inhibit virus replication by MOV10. MOV10 enhanced IFN regulatory factor 3-mediated transcription of IFN. However, this IFN induction by MOV10 was unique and independent of the known retinoic acid-inducible gene I/mitochondrial antiviral-signaling protein-mediated RNA-sensing pathway. Upon virus infection, MOV10 specifically required inhibitor of κB kinase ε, not TANK-binding kinase 1, for its antiviral activity. The important role of MOV10 in mediating antiviral signaling was further supported by the finding that viral proteases from picornavirus family specifically targeted MOV10 as a possible innate immune evasion mechanism. These results establish MOV10, an evolutionary conserved protein involved in RNA silencing, as an antiviral gene against RNA viruses that uses an retinoic acid-inducible gene I-like receptor-independent pathway to enhance IFN response.


Assuntos
Infecções por Cardiovirus/imunologia , Vírus da Encefalomiocardite/imunologia , RNA Helicases/metabolismo , Infecções por Rhabdoviridae/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Evasão da Resposta Imune , Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , RNA Helicases/genética , Interferência de RNA , RNA Viral/genética , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais
19.
Carcinogenesis ; 37(5): 522-9, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26992898

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a devastating disease for which new treatments, such as immunotherapy are needed. Synthetic double-stranded RNAs, which activate toll-like receptor 3 (TLR3), have been used as potent adjuvants in cancer immunotherapy by triggering a proapoptotic response in cancer cells. A better understanding of the mechanism of TLR3-mediated apoptosis and its potential involvement in controlling tumor metastasis could lead to improvements in current treatment. Using paired, autologous primary and metastatic HNSCC cells we previously showed that metastatic, but not primary tumor-derived cells, were unable to activate prosurvival NF-κB in response to p(I):p(C) resulting in an enhanced apoptotic response. Here, we show that transcriptional downregulation of receptor-interacting serine/threonine-protein kinase 1 (RIPK1) in metastatic HNSCC cells causes a loss of TLR3-mediated NF-κB signaling, resulting in enhanced apoptosis. Loss of RIPK1 strongly correlates with metastatic disease in a cohort of HNSCC patients. This downregulation of RIPK1 is possibly mediated by enhanced methylation of the RIPK1 promoter in tumor cells and enhances protumorigenic properties such as cell migration. The results described here establish a novel mechanism of TLR3-mediated apoptosis in metastatic cells and may create new opportunities for using double stranded RNA to target metastatic tumor cells.


Assuntos
Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Apoptose/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Metilação de DNA , Regulação para Baixo , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Imunidade Inata/genética , NF-kappa B/metabolismo , Regiões Promotoras Genéticas , RNA de Cadeia Dupla/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Receptor 3 Toll-Like/metabolismo
20.
Proc Natl Acad Sci U S A ; 113(6): 1642-7, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26729873

RESUMO

Clinical observations link respiratory virus infection and Pseudomonas aeruginosa colonization in chronic lung disease, including cystic fibrosis (CF) and chronic obstructive pulmonary disease. The development of P. aeruginosa into highly antibiotic-resistant biofilm communities promotes airway colonization and accounts for disease progression in patients. Although clinical studies show a strong correlation between CF patients' acquisition of chronic P. aeruginosa infections and respiratory virus infection, little is known about the mechanism by which chronic P. aeruginosa infections are initiated in the host. Using a coculture model to study the formation of bacterial biofilm formation associated with the airway epithelium, we show that respiratory viral infections and the induction of antiviral interferons promote robust secondary P. aeruginosa biofilm formation. We report that the induction of antiviral IFN signaling in response to respiratory syncytial virus (RSV) infection induces bacterial biofilm formation through a mechanism of dysregulated iron homeostasis of the airway epithelium. Moreover, increased apical release of the host iron-binding protein transferrin during RSV infection promotes P. aeruginosa biofilm development in vitro and in vivo. Thus, nutritional immunity pathways that are disrupted during respiratory viral infection create an environment that favors secondary bacterial infection and may provide previously unidentified targets to combat bacterial biofilm formation.


Assuntos
Biofilmes/crescimento & desenvolvimento , Imunidade , Fenômenos Fisiológicos da Nutrição , Pseudomonas aeruginosa/fisiologia , Infecções por Vírus Respiratório Sincicial/patologia , Vírus Sinciciais Respiratórios/fisiologia , Animais , Antivirais/farmacologia , Brônquios/patologia , Líquido da Lavagem Broncoalveolar , Fibrose Cística/microbiologia , Fibrose Cística/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Células Epiteliais/virologia , Homeostase/efeitos dos fármacos , Humanos , Interferon beta/farmacologia , Ferro/farmacologia , Camundongos , Interações Microbianas/efeitos dos fármacos , Modelos Biológicos , Pseudomonas aeruginosa/efeitos dos fármacos , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transferrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...