Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Biomembr ; 1861(1): 298-305, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29920238

RESUMO

Spectrin, a major component of the membrane skeletal meshwork of metazoan cells, is implicated to associate with membrane domains and is known to act as a scaffold for stabilization and activation of different signalling modules. We have studied the effect of GM1 (monosialotetrahexosyl ganglioside), a well-known model ganglioside and a signalling moiety, on the interaction of non-erythroid brain spectrin with both saturated and unsaturated aminophospholipids by spectroscopic methods. We observe that GM1 modulates brain spectrin-aminophospholipid interaction to the greatest degree whereas its effect on erythroid spectrin is not as pronounced. Fluorescence quenching studies show that brain spectrin interacts with DMPC/DMPE-based vesicles with a 10-fold increased affinity in presence of very low amounts of 2% and 5% GM1, and the extent of quenching decreases progressively in presence of increasing amounts of GM1. Interaction of brain spectrin with unsaturated membrane systems of DOPC/DOPE weakens in presence GM1. Increase in the mean lifetime of the Trp residues of brain spectrin in presence of GM1 indicates change in the microenvironment of spectrin, without affecting the secondary structure of the protein significantly. Studies on pressure - area isotherm of Langmuir-Blodgett monolayer and Brewster's angle microscopy show that GM1 has an expanding effect on the aminophospholipid monolayers, and ordered regions in DMPC/DMPE mixed monolayers are formed and are stabilized at higher pressure. GM1-induced fluidization of the phospholipid membranes and probable physical contact between bulky sugar head group of GM1 and spectrin, may explain the modulatory role of GM1 on aminophospholipid interactions with nonerythroid brain spectrin.


Assuntos
Encéfalo/metabolismo , Membrana Celular/química , Gangliosídeo G(M1)/química , Lipídeos/química , Oligossacarídeos/química , Espectrina/química , Triptofano/química , Animais , Dicroísmo Circular , Dimiristoilfosfatidilcolina/química , Cinética , Micelas , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Pressão , Ligação Proteica , Ovinos , Espectrometria de Fluorescência , Temperatura
2.
Adv Exp Med Biol ; 1112: 3-11, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30637686

RESUMO

Spectrin-based proteinaceous membrane skeletal network has been found to be implicated in membrane disorders like hereditary spherocytosis (HS). HS greatly affects eryptosis via loss of membrane asymmetry which is seen to be the case in haemoglobin disorders like thalassemia and sickle cell disease as well. The biological implications of the status of membrane asymmetry are strongly correlated to spectrin interactions with aminophospholipids, e.g. PE and PS. Fluorescence and X-ray reflectivity (XRR) measurements of spectrin interactions with small unilamellar vesicles (SUVs) and cushioned bilayers of phospholipids, respectively, were studied. Both the XRR and fluorescence measurements led to the characterization of spectrin orientation on the surface of lipid bilayer of phosphatidylcholine (PC) and PC/aminophospholipid mixed membrane systems showing formation of a uniform layer of spectrin on top of the mixed phospholipid bilayer. Fluorescence studies show that spectrin interacts with PC and phosphatidylethanolamine (PE)/phosphatidylserine (PS) membranes with binding dissociation constants (Kd) in the nanomolar range indicating the role of spectrin in the maintenance of the overall membrane asymmetry of erythrocytes.


Assuntos
Membrana Celular/química , Eritrócitos/citologia , Espectrina/química , Eriptose , Humanos , Bicamadas Lipídicas/química , Fosfolipídeos/química , Esferocitose Hereditária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...