Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4510, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802333

RESUMO

Modern lens designs are capable of resolving greater than 10 gigapixels, while advances in camera frame-rate and hyperspectral imaging have made data acquisition rates of Terapixel/second a real possibility. The main bottlenecks preventing such high data-rate systems are power consumption and data storage. In this work, we show that analog photonic encoders could address this challenge, enabling high-speed image compression using orders-of-magnitude lower power than digital electronics. Our approach relies on a silicon-photonics front-end to compress raw image data, foregoing energy-intensive image conditioning and reducing data storage requirements. The compression scheme uses a passive disordered photonic structure to perform kernel-type random projections of the raw image data with minimal power consumption and low latency. A back-end neural network can then reconstruct the original images with structural similarity exceeding 90%. This scheme has the potential to process data streams exceeding Terapixel/second using less than 100 fJ/pixel, providing a path to ultra-high-resolution data and image acquisition systems.

2.
Nanoscale Adv ; 5(21): 5850-5858, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37881699

RESUMO

In ferroelectric and multiferroic-based devices, it is often necessary to grow thicker films for enhanced properties. For certain phases that rely on substrate strain for growth, such thicker film growths beyond the typical thin film regime could be challenging. As an example, the Bi3Fe2Mn2Ox (BFMO) Aurivillius supercell (SC) phase possesses highly desirable multiferroic (i.e., ferromagnetic and ferroelectric) properties and a unique layered structure but relies heavily on substrate strain. Beyond the thin film regime (approximately 100 nm), a less desirable pseudo-cubic (PC) phase is formed. In this work, a novel heterogeneous re-seeding method is applied to maintain the strained growth in this SC phase beyond the thin film regime, thus enabling the growth of thick BFMO SC phase films. The insertion of periodic CeO2 interlayers reintroduces the heteroepitaxial strain and effectively re-initiates the growth of the SC phase. The thick BFMO SC phase maintains the overall multiferroic and interesting anisotropic optical properties, even exceeding those of the typical 100 nm SC film. This re-seeding method can be effectively adopted with other SC systems or strain-dependent thin films, thus introducing practical applications of the new SC phases without thickness limitations.

3.
Opt Express ; 30(19): 34533-34544, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242463

RESUMO

All-dielectric metasurfaces have recently led to a paradigm shift in nonlinear optics as they allow for circumventing the phase matching constraints of bulk crystals and offer high nonlinear conversion efficiencies when normalized by the light-matter interaction volume. Unlike bulk crystals, in all-dielectric metasurfaces nonlinear conversion efficiencies primarily rely on the material nonlinearity, field enhancements, and the modal overlaps, therefore most efforts to date have only focused on utilizing these degrees of freedom. In this work, we demonstrate that for second-harmonic generation in all-dielectric metasurfaces, an additional degree of freedom is the control of the polarity of the nonlinear susceptibility. We demonstrate that semiconductor heterostructures that support resonant nonlinearities based on quantum-engineered intersubband transitions provide this new degree of freedom. We can flip and control the polarity of the nonlinear susceptibility of the dielectric medium along the growth direction and couple it to the Mie-type photonic modes. Here we demonstrate that engineering the χ(2) polarity in the meta-atom enables the control of the second-harmonic radiation pattern and conversion efficiency. Our results therefore open a new direction for engineering and optimizing second-harmonic generation using all-dielectric intersubband nonlinear metasurfaces.

4.
Nanotechnology ; 33(40)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35671741

RESUMO

Metasurfaces control optical wavefronts via arrays of nanoscale resonators laid out across a surface. When combined with III-V semiconductors with strong optical nonlinearities, a variety of nonlinear effects such as harmonic generation and all-optical modulation can be enabled and enhanced at the nanoscale. This review presents our research on engineering and boosting nonlinear effects in ultrafast and nonlinear semiconductor metasurfaces fabricated at the Center for Integrated Nanotechnologies. We cover our recent works on parametric generation of harmonic light via direct and cascaded processes in GaAs-metasurfaces using Mie-like optical resonances or symmetric-protected bound state in the continuum, and then describe the recent advances on harmonic generation in all-dielectric metasurfaces coupled to intersubband transitions in III-V semiconductor heterostructures. The review concludes on the potential of metasurfaces to serve as the next platform for on-chip quantum light generation.

5.
Nano Lett ; 22(3): 896-903, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35043628

RESUMO

Enhancing the efficiency of second-harmonic generation using all-dielectric metasurfaces to date has mostly focused on electromagnetic engineering of optical modes in the meta-atom. Further advances in nonlinear conversion efficiencies can be gained by engineering the material nonlinearities at the nanoscale, however this cannot be achieved using conventional materials. Semiconductor heterostructures that support resonant nonlinearities using quantum engineered intersubband transitions can provide this new degree of freedom. By simultaneously optimizing the heterostructures and meta-atoms, we experimentally realize an all-dielectric polaritonic metasurface with a maximum second-harmonic generation power conversion factor of 0.5 mW/W2 and power conversion efficiencies of 0.015% at nominal pump intensities of 11 kW/cm2. These conversion efficiencies are higher than the record values reported to date in all-dielectric nonlinear metasurfaces but with 3 orders of magnitude lower pump power. Our results therefore open a new direction for designing efficient nonlinear all-dielectric metasurfaces for new classical and quantum light sources.

6.
Nanoscale Adv ; 5(1): 247-254, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36605792

RESUMO

Magnetoacoustic waves generated in piezoelectric and ferromagnetic coupled nanocomposite films through magnetically driven surface acoustic waves present great promise of loss-less data transmission. In this work, ferromagnetic metals of Ni, Co and Co x Ni1-x are coupled with a piezoelectric ZnO matrix in a vertically-aligned nanocomposite (VAN) thin film platform. Oxidation was found to occur in the cases of ZnO-Co, forming a ZnO-CoO VAN, while only very minor oxidation was found in the case of ZnO-Ni VAN. An alloy approach of Co x Ni1-x has been explored to overcome the oxidation during growth. Detailed microstructural analysis reveals limited oxidation of both metals and distinct phase separation between the ZnO and the metallic phases. Highly anisotropic properties including anisotropic ferromagnetic properties and hyperbolic dielectric functions are found in the ZnO-Ni and ZnO-Co x Ni1-x systems. The magnetic metal-ZnO-based hybrid metamaterials in this report present great potential in coupling of optical, magnetic, and piezoelectric properties towards future magnetoacoustic wave devices.

7.
Nano Lett ; 21(1): 367-374, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33347293

RESUMO

Mie-resonant dielectric metasurfaces are excellent candidates for both fundamental studies related to light-matter interactions and for numerous applications ranging from holography to sensing to nonlinear optics. To date, however, most applications using Mie metasurfaces utilize only weak light-matter interaction. Here, we go beyond the weak coupling regime and demonstrate for the first time strong polaritonic coupling between Mie photonic modes and intersubband (ISB) transitions in semiconductor heterostructures. Furthermore, along with demonstrating ISB polaritons with Rabi splitting as large as 10%, we also demonstrate the ability to tailor the strength of strong coupling by engineering either the semiconductor heterostructure or the photonic mode of the resonators. Unlike previous plasmonic-based works, our new all-dielectric metasurface approach to generate ISB polaritons is free from ohmic losses and has high optical damage thresholds, thereby making it ideal for creating novel and compact mid-infrared light sources based on nonlinear optics.

8.
Opt Lett ; 43(9): 2189-2192, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714786

RESUMO

We demonstrate that interplay between absorption and scattering in a dielectric medium with a microscopic pore gives rise to eigenchannels concentrated in the pore. Such a circumvention of attenuation leads to high transmission. By exciting such eigenchannels in a disordered nanophotonic system with a wavefront shaping technique, we experimentally confirm enhanced injection at depths exceeding the limiting length scales set by scattering, absorption, and diffraction.

9.
Phys Rev Lett ; 117(8): 086803, 2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27588875

RESUMO

We demonstrate experimentally the efficient control of light intensity distribution inside a random scattering system. The adaptive wave front shaping technique is applied to a silicon waveguide containing scattering nanostructures, and the on-chip coupling scheme enables access to all input spatial modes. By selectively coupling the incident light to the open or closed channels of the disordered system, we not only vary the total energy stored inside the system by a factor of 7.4, but also change the energy density distribution from an exponential decay to a linear decay and to a profile peaked near the center. This work provides an on-chip platform for controlling light-matter interactions in turbid media.

10.
Phys Rev Lett ; 114(5): 053903, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25699443

RESUMO

We demonstrate in open microcavities with broken chiral symmetry that quasidegenerate pairs of copropagating-wave resonances are transformed by rotation to counterpropagating ones, leading to a striking change of emission directions. The rotation-induced relative change in output intensity increases exponentially with cavity size, in contrast to the linear scaling of the Sagnac effect. By tuning the degree of spatial chirality with cavity shape, we are able to maximize the emission sensitivity to rotation without spoiling the quality factor.

11.
Phys Rev Lett ; 112(2): 023904, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24484016

RESUMO

We present direct experimental evidence for position-dependent diffusion in open random media. The interference of light in time-reversed paths results in renormalization of the diffusion coefficient, which varies spatially. To probe the wave transport inside the system, we fabricate two-dimensional disordered waveguides and monitor the light intensity from the third dimension. Change the geometry of the system or dissipation limits the size of the loop trajectories, allowing us to control the renormalization of the diffusion coefficient. This work shows the possibility of manipulating wave diffusion via the interplay of localization and dissipation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...