Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 746, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891155

RESUMO

NOAA has developed a global reference evapotranspiration (ET0) reanalysis using the UN Food and Agriculture Organization formulation (FAO-56) of the Penman-Monteith equation forced by MERRA phase 2 (MERRA2) meteorological and radiative drivers. The NOAA ET0 reanalysis is provided daily from January 1, 1980 to the near-present at a resolution of 0.5° latitude × 0.625° longitude. The reanalysis is verified against station data across southern Africa, a region presenting both significant challenges regarding hydroclimatic variability and observational quantity and quality and significant potential benefits to food-insecure populations. These data are generated from observations from the Southern African Science Service Centre for Climate Change and Adaptive Land Management (SASSCAL) network. We further verified globally against spatially distributed ET0 derived from two reanalyses-the Global Data Assimilation System (GDAS) and Princeton Global Forcing (PGF)-and these verifications produced similar results, yet demonstrated wide regional and seasonal differences. We also present cases that verify the operational applicability of the reanalysis in long-established drought, famine, crop- and pastoral-stress metrics, and in predictability assessments of drought forecasts.


Assuntos
Produtos Agrícolas , Secas , Agricultura , Mudança Climática , Transpiração Vegetal
2.
Artigo em Inglês | MEDLINE | ID: mdl-30997362

RESUMO

The objective of the Indianapolis Flux Experiment (INFLUX) is to develop, evaluate and improve methods for measuring greenhouse gas (GHG) emissions from cities. INFLUX's scientific objectives are to quantify CO2 and CH4 emission rates at 1 km resolution with a 10% or better accuracy and precision, to determine whole-city emissions with similar skill, and to achieve high (weekly or finer) temporal resolution at both spatial resolutions. The experiment employs atmospheric GHG measurements from both towers and aircraft, atmospheric transport observations and models, and activity-based inventory products to quantify urban GHG emissions. Multiple, independent methods for estimating urban emissions are a central facet of our experimental design. INFLUX was initiated in 2010 and measurements and analyses are ongoing. To date we have quantified urban atmospheric GHG enhancements using aircraft and towers with measurements collected over multiple years, and have estimated whole-city CO2 and CH4 emissions using aircraft and tower GHG measurements, and inventory methods. Significant differences exist across methods; these differences have not yet been resolved; research to reduce uncertainties and reconcile these differences is underway. Sectorally- and spatially-resolved flux estimates, and detection of changes of fluxes over time, are also active research topics. Major challenges include developing methods for distinguishing anthropogenic from biogenic CO2 fluxes, improving our ability to interpret atmospheric GHG measurements close to urban GHG sources and across a broader range of atmospheric stability conditions, and quantifying uncertainties in inventory data products. INFLUX data and tools are intended to serve as an open resource and test bed for future investigations. Well-documented, public archival of data and methods is under development in support of this objective.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA