Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Signal ; 18(11): 2004-12, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16725308

RESUMO

G-protein-coupled-receptor kinase 2 (GRK2) plays a key role in the modulation of G-protein-coupled-receptor (GPCR) signaling by both phosphorylating agonist-occupied GPCRs and by directly binding to activated Galphaq subunits, inhibiting downstream effectors activation. The GRK2/Galphaq interaction involves the N-terminal region of the kinase that displays homology to regulators of G-protein signaling (RGS) proteins. We have previously reported that upon GPCR stimulation, GRK2 can be phosphorylated by c-Src on tyrosine residues that are present in the RGS-homology (RH) region of this kinase. Here, we demonstrate that c-Src kinase activity increases the interaction between GRK2 and Galphaq. Tyrosine phosphorylation of GRK2 appears to be critically involved in the modulation of this interaction since the stimulatory effect of c-Src is not observed with a GRK2 mutant with impaired tyrosine phosphorylation (GRK2 Y13,86,92F), whereas a mutant that mimics GRK2 tyrosine phosphorylation in these residues displays an increased interaction with Galphaq. As evidence for a physiological role of this modulatory mechanism, activation of the muscarinic receptor M1, a Galphaq-coupled receptor, promotes an increase in GRK2/Galphaq co-immunoprecipitation that parallels the enhanced GRK2 phosphorylation on tyrosine residues. Moreover, c-Src activation enhances inhibition of the Galphaq/phospholipase Cbeta signaling pathway in intact cells, in a GRK2-tyrosine-phosphorylation-dependent manner. Our results suggest a feedback mechanism by which phosphorylation of GRK2 by c-Src increases both GRK2 kinase activity towards GPCRs and its specific interaction with Galphaq subunits, leading to a more rapid switch off of Galphaq-mediated signaling.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Proteínas Tirosina Quinases/metabolismo , Tirosina/metabolismo , Quinases de Receptores Adrenérgicos beta/metabolismo , Proteína Tirosina Quinase CSK , Linhagem Celular , Quinase 2 de Receptor Acoplado a Proteína G , Humanos , Fosforilação , Ligação Proteica/fisiologia , Quinases da Família src
2.
Mol Pharmacol ; 64(3): 629-39, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12920199

RESUMO

The G protein-coupled receptor (GPCR) kinase GRK2 phosphorylates G protein-coupled receptors in an agonist-dependent manner. GRK2 activity is modulated through interactions of diverse domains of the kinase with G protein betagamma subunits, several lipids, anchoring proteins, and activated receptors. We report that kinase activity toward either GPCR (rhodopsin) or a synthetic peptide substrate is enhanced in the presence of GST-GRK2 fusion proteins or peptides corresponding to either N- or C-terminal sequences of GRK2. This direct stimulatory action of intrinsic domains on GRK2 activity does not add to the effect of other regulators, such as Gbetagamma subunits, and strongly suggests the existence of some mode of autoregulation. The existence of regulatory intramolecular interactions in GRK2 is supported by the facts that a C-terminal peptide protects the N-terminal region from proteolytic cleavage and that two domains of GRK2 independently coexpressed in cells associate as assessed by immunoprecipitation. Molecular modeling suggests that intramolecular interactions among the N-terminal, C-terminal and kinase domains would keep GRK2 in a constrained conformation characteristic of an inactive, basal state. Our model proposes that disruption of such intramolecular contacts by intermolecular interactions with regulatory proteins (mimicked by exogenously added kinase fragments in vitro) would promote the conformational changes required to bring about GRK2 translocation and activation.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Animais , Bovinos , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática , Modelos Moleculares , Fosforilação , Ligação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Quinases de Receptores Adrenérgicos beta
3.
J Biol Chem ; 278(31): 29164-73, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12738776

RESUMO

G protein-coupled receptor kinase 2 (GRK2) is a key modulator of G protein-coupled receptors (GPCR). Altered expression of GRK2 has been described to occur during pathological conditions characterized by impaired GPCR signaling. We have reported recently that GRK2 is rapidly degraded by the proteasome pathway and that beta-arrestin function and Src-mediated phosphorylation are involved in targeting GRK2 for proteolysis. In this report, we show that phosphorylation of GRK2 by MAPK also triggers GRK2 turnover by the proteasome pathway. Modulation of MAPK activation alters the degradation of transfected or endogenous GRK2, and a GRK2 mutant that mimics phosphorylation by MAPK shows an enhanced degradation rate, thus indicating a direct effect of MAPK on GRK2 turnover. Interestingly, MAPK-mediated modulation of wild-type GRK2 stability requires beta-arrestin function and is facilitated by previous phosphorylation of GRK2 on tyrosine residues by c-Src. Consistent with an important physiological role, interfering with this GRK2 degradation process results in altered GPCR responsiveness. Our data suggest that both c-Src and MAPK-mediated phosphorylation would contribute to modulate GRK2 degradation, and put forward the existence of new feedback mechanisms connecting MAPK cascades and GPCR signaling.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Animais , Arrestinas/fisiologia , Células COS , Proteína Tirosina Quinase CSK , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/genética , Cisteína Endopeptidases/metabolismo , Retroalimentação Fisiológica , Humanos , Células Jurkat , Complexos Multienzimáticos/metabolismo , Mutagênese Sítio-Dirigida , Fosforilação , Complexo de Endopeptidases do Proteassoma , Proteínas Tirosina Quinases/metabolismo , Transfecção , Tirosina/metabolismo , Quinases de Receptores Adrenérgicos beta , beta-Arrestinas , Quinases da Família src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...