Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 11(18): 3612-7, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25797701

RESUMO

Bacterial biofilms are highly structured, surface associated bacteria colonies held together by a cell-generated polymer network known as EPS (extracellular polymeric substance). This polymer network assists in adhesion to surfaces and generates spreading forces as colonies grow over time. In the laboratory and in nature, biofilms often grow at the interface between air and an elastic, semi-permeable nutrient source. As this type of biofilm increases in volume, an accommodating compression of its substrate may arise, potentially driven by the osmotic pressure exerted by the EPS against the substrate surface. Here we study Bacillus subtilis biofilm force generation by measuring the magnitude and rate of deformation imposed by colonies against the agar-nutrient slabs on which they grow. We find that the elastic stress stored in deformed agar is orders of magnitude larger than the drag stress associated with pulling fluid through the agar matrix. The stress exerted by the biofilm is nearly the same as the osmotic pressure generated by the EPS, and mutant colonies incapable of producing EPS exert much lower levels of stress. The fluid flow rate into B. subtilis biofilms suggest that EPS generated pressure provides some metabolic benefit as colonies expand in volume. These results reveal that long-term biofouling and colony expansion may be tied to the hydraulic permeability and elasticity of the surfaces that biofilms colonize.


Assuntos
Bacillus subtilis/fisiologia , Biofilmes/crescimento & desenvolvimento , Polímeros/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Módulo de Elasticidade , Microscopia , Pressão Osmótica , Polímeros/metabolismo , Propriedades de Superfície , Imagem com Lapso de Tempo
2.
J Mech Behav Biomed Mater ; 29: 213-24, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24099950

RESUMO

Mechanical property data for brain tissue are needed to understand the biomechanics of neurological disorders and response of the brain to different mechanical and surgical forces. Most studies have characterized mechanical behavior of brain tissues over large regions or classified tissue properties for either gray or white matter regions only. In this study, spatially heterogeneous viscoelastic properties of ex vivo rat brain tissue slices were measured in different anatomical regions including the cerebral cortex, caudate/putamen, and hippocampus using an optical coherence tomography (OCT) indentation system. Cell viability was also tested to observe neuronal degeneration and morphological changes in tissue slices and provide a proper timeline for mechanical tests. Shear modulus was estimated by fitting normalized deformation data (D/ti), which was defined as the ratio of deformation depth (D) to initial thickness of the tissue slice (ti), to a viscoelastic finite element model. The estimated shear modulus decayed nonlinearly over 10min in each anatomical region, and the range of instantaneous to equilibrium shear modulus was 3.8-0.54kPa in the cerebral cortex, 1.4-0.27kPa in the hippocampus and 1.0-0.17kPa in the caudate/putamen. Although these regions are all gray matter structures, their measured mechanical properties were significantly different. Accurate measurement of inter-regional variations in mechanical properties will contribute to improved understanding organ-level structural parameters and regional differential susceptibility to deformation injury within CNS tissues.


Assuntos
Encéfalo/citologia , Elasticidade , Teste de Materiais , Animais , Sobrevivência Celular , Análise de Elementos Finitos , Masculino , Ratos , Ratos Sprague-Dawley , Resistência ao Cisalhamento , Tomografia de Coerência Óptica , Viscosidade
3.
J Biomed Mater Res B Appl Biomater ; 97(1): 84-95, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21290586

RESUMO

Currently, micro-indentation testing of soft biological materials is limited in its capability to test over long time scales due to accumulated instrumental drift errors. As a result, there is a paucity of measures for mechanical properties such as the equilibrium modulus. In this study, indentation combined with optical coherence tomography (OCT) was used for mechanical testing of thin tissue slices. OCT was used to measure the surface deformation profiles after placing spherical beads onto submerged test samples. Agarose-based hydrogels at low-concentrations (w/v, 0.3-0.6%) and acute rat brain tissue slices were tested using this technique over a 30-min time window. To establish that tissue slices maintained cell viability, allowable testing times were determined by measuring neuronal death or degeneration as a function of incubation time with Fluor-Jade C (FJC) staining. Since large deformations at equilibrium were measured, displacements of surface beads were compared with finite element elastic contact simulations to predict the equilibrium modulus, µ(∞) . Values of µ(∞) for the low-concentration hydrogels ranged from 0.07 to 1.8 kPa, and µ(∞) for acute rat brain tissue slices was 0.13 ± 0.04 kPa for the cortex and 0.09 ± 0.015 kPa for the hippocampus (for Poisson ratio = 0.35). This indentation technique offers a localized, real-time, and high resolution method for long-time scale mechanical testing of very soft materials. This test method may also be adapted for viscoelasticity, for testing of different tissues and biomaterials, and for analyzing changes in internal structures with loading.


Assuntos
Encéfalo , Microdissecção , Neurônios , Tomografia de Coerência Óptica , Animais , Morte Celular , Sobrevivência Celular , Feminino , Hidrogéis/química , Ratos , Ratos Sprague-Dawley
4.
Phys Med Biol ; 55(23): 7253-61, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21081822

RESUMO

The objective of this study was to develop a numerical solver to calculate the magneto-hydrodynamic (MHD) signal produced by a moving conductive liquid, i.e. blood flow in the great vessels of the heart, in a static magnetic field. We believe that this MHD signal is able to non-invasively characterize cardiac blood flow in order to supplement the present non-invasive techniques for the assessment of heart failure conditions. The MHD signal can be recorded on the electrocardiogram (ECG) while the subject is exposed to a strong static magnetic field. The MHD signal can only be measured indirectly as a combination of the heart's electrical signal and the MHD signal. The MHD signal itself is caused by induced electrical currents in the blood due to the moving of the blood in the magnetic field. To characterize and eventually optimize MHD measurements, we developed a MHD solver based on a finite element code. This code was validated against literature, experimental and analytical data. The validation of the MHD solver shows good agreement with all three reference values. Future studies will include the calculation of the MHD signals for anatomical models. We will vary the orientation of the static magnetic field to determine an optimized location for the measurement of the MHD blood flow signal.


Assuntos
Circulação Sanguínea , Hidrodinâmica , Magnetismo , Modelos Biológicos , Aorta/fisiologia , Humanos
5.
J Pharm Sci ; 92(2): 232-43, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12532372

RESUMO

The potential for administering substance P (SP) nocitoxins for the treatment of chronic pain has been identified. To characterize treatment protocols for the spinal cord or elsewhere, binding/internalization of these compounds at the cellular targets must be understood quantitatively. Thus, a kinetic model of SP binding and intracellular trafficking has been developed from data. The eight differential equation model describes surface binding between SP and neurokinin 1 receptor, clathrin-mediated endocytosis followed by spatial translation to a perinuclear endosome where SP is sorted from its receptor, SP degradation in late endosomes/early lysosomes, and return of sorted receptor to plasma membrane via recycling endosomes. With suitably optimized parameters, the model accounts for the kinetics of total, membrane-associated, and internalized SP in cells continuously exposed to SP, as well as the fractions of internalized SP remaining intact at 30 and 60 min. Simultaneously, the model accounts for the kinetics of internalization and receptor recycling after SP preloading of membrane and subsequent exposure to SP-free media. Rate constants (min(-1)) are: 0.034 +/- 0.004 (receptor off-rate), 0.15 +/- 0.03 (internalization), 0.048 +/- 0.003 (exit from sorting endosome), 0.062 +/- 0.008 (exit of labeled SP amino acids from prelysosome), and 0.029 +/- 0.004 (receptor return from recycling endosome to plasma membrane). The SP kinetics resemble those of transferrin and its receptor at the internalization step, but are several-fold slower in the sorting and recycling steps.


Assuntos
Substância P/metabolismo , Algoritmos , Animais , Linhagem Celular , Cinética , Modelos Biológicos , Modelos Estatísticos , Ratos , Receptores da Neurocinina-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...