Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 156: 97-108, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25839744

RESUMO

A global challenge of increasing concern is diminishing fresh water resources. A growing practice in many communities to supplement diminishing fresh water availability has been the reuse of water. Novel methods of treating polluted waters, such as membrane assisted technologies, have recently been developed and successfully implemented in many places. Given the diversity of membrane assisted technologies available, the current challenge is how to select a reliable alternative among numerous technologies for appropriate water reuse. In this research, a fuzzy logic based multi-criteria, group decision making tool has been developed. This tool has been employed in the selection of appropriate membrane treatment technologies for several non-potable and potable reuse scenarios. Robust criteria, covering technical, environmental, economic and socio-cultural aspects, were selected, while 10 different membrane assisted technologies were assessed in the tool. The results show this approach capable of facilitating systematic and rigorous analysis in the comparison and selection of membrane assisted technologies for advanced wastewater treatment and reuse.


Assuntos
Conservação dos Recursos Naturais/métodos , Técnicas de Apoio para a Decisão , Filtração/métodos , Membranas Artificiais , Águas Residuárias/análise , Purificação da Água/métodos , Abastecimento de Água , Tomada de Decisões , Lógica Fuzzy , Humanos , Tecnologia
2.
Appl Microbiol Biotechnol ; 98(2): 945-56, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23657583

RESUMO

Nitrification is an integral part of biological nitrogen removal processes and usually the limiting step in wastewater treatment systems. Since nitrification is often considered not feasible at temperatures higher than 40 °C, warm industrial effluents (with operating temperatures higher than 40 °C) need to be cooled down prior to biological treatment, which increases the energy and operating costs of the plants for cooling purposes. This study describes the occurrence of thermophilic biological nitrogen removal activity (nitritation, nitratation, and denitrification) at a temperature as high as 50 °C in an activated sludge wastewater treatment plant treating wastewater from an oil refinery. Using a modified two-step nitrification-two-step denitrification mathematical model extended with the incorporation of double Arrhenius equations, the nitrification (nitrititation and nitratation) and denitrification activities were described including the cease in biomass activity at 55 °C. Fluorescence in situ hybridization (FISH) analyses revealed that Nitrosomonas halotolerant and obligatehalophilic and Nitrosomonas oligotropha (known ammonia-oxidizing organisms) and Nitrospira sublineage II (nitrite-oxidizing organism (NOB)) were observed using the FISH probes applied in this study. In particular, this is the first time that Nitrospira sublineage II, a moderatedly thermophilic NOB, is observed in an engineered full-scale (industrial) wastewater treatment system at temperatures as high as 50 °C. These observations suggest that thermophilic biological nitrogen removal can be attained in wastewater treatment systems, which may further contribute to the optimization of the biological nitrogen removal processes in wastewater treatment systems that treat warm wastewater streams.


Assuntos
Bactérias/metabolismo , Nitrogênio/metabolismo , Águas Residuárias/química , Águas Residuárias/microbiologia , Poluentes da Água/metabolismo , Purificação da Água/métodos , Desnitrificação , Temperatura Alta , Hibridização in Situ Fluorescente , Resíduos Industriais , Modelos Teóricos
3.
Water Sci Technol ; 57(12): 1873-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18587173

RESUMO

The paper discusses the experimental optimisation of both chemical and mechanical cleaning procedures for a flat-sheet submerged membrane bioreactor fed with municipal wastewater. Fouling was evaluated by means of the critical flux concept, which was experimentally measured by short-term flux-stepping tests. By keeping constant most important parameters of the biological process (MLSS, sludge age), two different chemical cleaning protocols (2,000 mg L(-1) NaOCl and 200 mg L(-1) NaOCl) were applied with different frequency and, after approximately 9 months of operation, the criticality threshold was determined under different values of SAD(m) (specific aeration demand per unit of membrane surface area). The weaker and more frequent chemical cleaning regime (200 mg L(-1), monthly) proved much more effective than the stronger and less frequent strategy (2,000 mg L(-1), once every three months). The improvement of performances was quantified by two TMP-based parameters, the fouling rate and the DeltaTMP (difference between TMP values during the increasing and decreasing phase of hysteresis). The best performing configuration was then checked over a longer period by running four long-term trials showing an exponential trend of the sub-critical fouling rate with the imposed flux.


Assuntos
Reatores Biológicos , Membranas Artificiais , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Ar , Movimentos do Ar , Reprodutibilidade dos Testes , Eliminação de Resíduos Líquidos/instrumentação , Purificação da Água/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...