Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Pharmaceutics ; 15(11)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38004552

RESUMO

Tomato by-products represent a good source of phytochemical compounds with health properties, such as the steroidal glycoalkaloid α-tomatine (α-TM) and its aglycone tomatidine (TD). Both molecules have numerous beneficial properties, such as potential anticancer activity. Unfortunately, their therapeutic application is limited due to stability and bioavailability issues. Therefore, a valid strategy seems to be their encapsulation into Solid Lipid Nanoparticles (SLN). The nanoformulations containing α-TM (α-TM-SLN) and TD (TD-SLN) were prepared by solvent-diffusion technique and subsequently characterized in terms of technological parameters (particle size, polydispersity index, zeta potential, microscopy, and calorimetric studies). To assess the effect of α-TM and TD on the percentage of cellular viability in Olfactory Ensheathing Cells (OECs), a peculiar glial cell type of the olfactory system used as normal cells, and in SH-SY5Y, a neuroblastoma cancer cell line, an MTT test was performed. In addition, the effects of empty, α-TM-SLN, and TD-SLN were tested. Our results show that the treatment of OECs with blank-SLN, free α-TM (0.25 µg/mL), and TD (0.50 µg/mL) did not induce any significant change in the percentage of cell viability when compared with the control. In contrast, in SH-SY5Y-treated cells, a significant decrease in the percentage of cell viability when compared with the control was found. In particular, the effect appeared more evident when SH-SY5Y cells were exposed to α-TM-SLN and TD-SLN. No significant effect in blank-SLN-treated SH-SY5T cells was observed. Therefore, SLN is a promising approach for the delivery of α-TM and TD.

3.
Pharmaceutics ; 15(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36986812

RESUMO

Although mangiferin (MGN) is a natural antioxidant that could be a good candidate for the treatment of ocular diseases, its use in ophthalmology is strongly compromised due to its high lipophilicity. Its encapsulation in nanostructured lipid carriers (NLC) seems to be an interesting strategy for improving its ocular bioavailability. As reported in our previous work, MGN-NLC showed high ocular compatibility and fulfilled the nanotechnological requirements needed for ocular delivery. The aim of the present work was to investigate, in vitro and ex vivo, the capability of MGN-NLC to act as a potential drug delivery system for MGN ocular administration. The data obtained in vitro on arising retinal pigment epithelium cells (ARPE-19) did not show cytotoxic effects for blank NLC and MGN-NLC; likewise, MGN-NLC showed the maintenance of the antioxidant role of MGN by mitigating ROS (Reactive Oxygen Species) formation and GSH (glutathione) depletion induced by H2O2. In addition, the capacity of MGN-released to permeate through and accumulate into the ocular tissues was confirmed ex vivo using bovine corneas. Finally, the NLC suspension has been formulated as a freeze-dried powder using mannitol at a concentration of 3% (w/v) in order to optimize its storage for long periods of time. All this evidence suggests a potential application of MGN-NLC in the treatment of oxidative stress-related ocular diseases.

4.
Molecules ; 28(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36838532

RESUMO

Solid lipid nanoparticles (SLNs) are lipid-based colloidal systems used for the delivery of active compounds. Although SLNs have many benefits, they show important issues due to physical and chemical instability phenomena during storage. For these reasons, it is highly desirable to have a dried SLN formulation available. Therefore, the aim of the project was to identify suitable methods to obtain a dry powder formulation from an SLN suspension. The nanoparticle suspension was dried using both freeze- and spray-drying techniques. The suitability of these methods in obtaining SLN dry powders was evaluated from the analyses of nanotechnological parameters, system morphology and thermal behavior using differential scanning calorimetry. Results pointed out that both drying techniques, although at different yields, were able to produce an SLN dry powder suitable for pharmaceutical applications. Noteworthily, the freeze-drying of SLNs under optimized conditions led to a dry powder endowed with good reconstitution properties and technological parameters similar to the starting conditions. Moreover, freeze-thaw cycles were carried out as a pretest to study the protective effect of different cryoprotectants (e.g., glucose and mannitol with a concentration ranging from 1% to 10% w/v). Glucose proved to be the most effective in preventing particle growth during freezing, thawing, and freeze-drying processes; in particular, the optimum concentration of glucose was 1% w/v.


Assuntos
Nanopartículas , Pós/química , Tamanho da Partícula , Nanopartículas/química , Composição de Medicamentos/métodos , Liofilização/métodos
5.
Pharmaceutics ; 15(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36839716

RESUMO

Colorectal cancer is one of the most diffused tumoral diseases. Since most medicaments employed for its treatment are debilitating, the use of naturally derived products, which can be effective against the mutated cells and, in addition, can reduce most inflammatory-related effects, could be extremely beneficial for the continued treatment of this disease. In this research, ethyl protocatechuate (PCAEE), a protocatechuic acid prodrug, was encapsulated in solid lipid nanoparticles (SLN) (prepared without and with Tween 80), which were characterized in terms of size, polydispersity index (PDI), zeta potential and thermotropic behavior. Encapsulation efficiency, release profile and interaction with a model of biomembrane were also assessed. The nanoparticles were tested in vitro on both healthy cells and on a model of tumoral cells. SLN prepared with Tween 80 was promising in terms of physicochemical properties (z-average of 190 nm, PDI 0.150 and zeta potential around -20 mV) and encapsulation efficiency (56%); they showed a desirable release profile, demonstrated an ability to penetrate and release the encapsulated PCAEE into a biomembrane model and were nontoxic on healthy cells. In addition, they caused a greater dose-dependent decrease in the viability of CaCo-2 cells than PCAEE alone. In conclusion, the formulation could be proposed for further studies to assess its suitability for the treatment of colorectal cancer.

6.
Membranes (Basel) ; 12(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36557189

RESUMO

Investigation of the interaction between drugs and biomembrane models, as a strategy to study and eventually improve drug/substrate interactions, is a crucial factor in preliminary screening. Synthesized peptides represent a source of potential anticancer and theragnostic drugs. In this study, we investigated the interaction of a novel synthesized peptide, called RH-23, with a simplified dimyristoylphosphatidylcholine (DMPC) model of the cellular membrane. The interaction of RH-23 with DMPC, organized either in multilamellar vesicles (MLVs) and in Langmuir-Blodgett (LB) monolayers, was assessed using thermodynamic techniques, namely differential scanning calorimetry (DSC) and LB. The calorimetric evaluations showed that RH-23 inserted into MLVs, causing a stabilization of the phospholipid gel phase that increased with the molar fraction of RH-23. Interplay with LB monolayers revealed that RH-23 interacted with DMPC molecules. This work represents the first experimental thermodynamic study on the interaction between RH-23 and a simplified model of the lipid membrane, thus providing a basis for further evaluations of the effect of RH-23 on biological membranes and its therapeutic/diagnostic potential.

7.
Membranes (Basel) ; 12(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36295696

RESUMO

Cell membrane models are useful for obtaining molecular-level information on the interaction of biologically active molecules whose activity is believed to depend also on their effects on the membrane. Cytarabine was conjugated with fatty acids to improve the drug lipophilicity and the interaction with the biomembrane model. Cytarabine was conjugated with fatty acids of different lengths to form the trimyristoyl cytarabine and the tristearoyl cytarabine derivatives. Their interaction with biomembrane models constituted by dimyristoylphosphatidylcholine (DMPC) monolayers was studied by employing the Langmuir-Blodgett technique. DMPC/cytarabine, DMPC/trimyristoyl cytarabine and DMPC/tristearoyl cytarabine mixed monolayers at increasing molar fractions of the compound were prepared and placed on the subphase. The mean molecular area/surface pressure isotherms were recorded at 37 °C. Between the molecules of DMPC and those of cytarabine or prodrugs, repulsive forces act. However, these forces are very weak between DMPC and cytarabine and stronger between DMPC and the cytarabine derivatives, thus avoiding the expulsion of the compounds at higher surface pressure and modifying the stability of the mixed monolayer. The fatty acid moieties could then modulate the affinity of cytarabine for biomembranes.

8.
Molecules ; 27(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36144620

RESUMO

Skin is the first human barrier that is daily exposed to a broad spectrum of physical and chemical agents, which can increase reactive oxygen species (ROS) and lead to the formation of topical disorders. Antioxidant molecules, such as benzo[k,l]xanthene lignans (BXL), are ideal candidates to eliminate or minimize the effects of ROS. Herein, we aimed to formulate BXL-loaded solid lipid nanoparticles (SLN-BXL) to improve the bioavailability and interaction with the skin, and also to investigate the protective impact against intracellular ROS generation in HFF-1 in comparison with the drug-free situation. SLN-BXL were formulated using the PIT/ultrasonication method, and then were subjected to physicochemical characterizations, i.e., average size, zeta potential (ZP), polydispersity index (PDI), encapsulation efficiency (%EE), thermotropic behavior, and interaction with a biomembrane model. The results show a mean size around 200 nm, PDI of 0.2, and zeta potential of about -28 mV, with values almost unchanged over a period of three months, while the EE% is ≈70%. Moreover, SLN-BXL are able to deeply interact with the biomembrane model, and to achieve a double-action release in mildly hydrophobic matrices; the results of the in vitro experiments confirm that SLN-BXL are cell-safe and capable of attenuating the IL-2-induced high ROS levels. In conclusion, based on our findings, the formulation can be proposed as a candidate for a preventive remedy against skin disorders induced by increased levels of ROS.


Assuntos
Lignanas , Nanopartículas , Antioxidantes/farmacologia , Portadores de Fármacos , Humanos , Interleucina-2 , Lignanas/farmacologia , Lipídeos/química , Lipossomos , Nanopartículas/química , Tamanho da Partícula , Espécies Reativas de Oxigênio , Xantenos
9.
Membranes (Basel) ; 12(6)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35736322

RESUMO

Benzo[k,l]xanthene lignans are a group of rare natural products belonging to the class of polyphenols with promising biological activities and are studied as potential chemotherapeutic agents. The lipophilic character of a xanthene core makes these molecules difficult to be used in an aqueous medium, limiting their employment in studies for pharmaceutical applications. To overcome this problem, a drug-delivery system which is able to improve the stability and bioavailability of the compound can be used. In this study, a bioactive benzoxanthene lignan (BXL) has been included in SLN. Unloaded and BXL-loaded SLN have been prepared using the Phase Inversion Temperature method and characterized in terms of size, zeta potential, entrapment efficiency and stability. Differential scanning calorimetry was used to evaluate the thermotropic behavior and ability of SLN to act as carriers for BXL. A biomembrane model, represented by multilamellar vesicles, was used to simulate the interaction of the SLN with the cellular membrane. Unloaded and loaded SLN were incubated with the MLV, and their interactions were evaluated through variations in their calorimetric curves. The results obtained suggest that SLN could be used as a delivery system for BXL.

10.
Membranes (Basel) ; 12(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35629809

RESUMO

Histoplasma capsulatum is a dimorphic, thermal, and nutritional fungus. In the environment and at an average temperature of 28 °C, it develops as a mold that is composed of infecting particles. Once in the host or in cultures at 37 °C, it undergoes a transition into the parasitic form. In the present work, we performed chemical extraction and characterization using chromatography techniques of the associated lipid composition of the external surface of the cell wall of the mycelial phase of two isolates of the H. capsulatum: one clinical and one environmental. Several differences were evidenced in the fatty acids in the phospholipid composition. Surface pressure-area isotherms and compression module curves of the Amphotericin B and lipid extract monolayers, as well as (AmB)-lipid extract mixed monolayers were recorded. Results show a high affinity of AmB towards lipid extracts. The most stable monolayers were formed by AmB + environmental with a mass ratio of 1:3 and AmB + clinical with a mass ratio of 1:2. Knowledge of the AmB aggregation processes at a molecular level and the characterization of the lipid extracts allows the possibility to understand the interaction between the AmB and the lipid fractions of H. capsulatum.

11.
Membranes (Basel) ; 12(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35323757

RESUMO

The interactions of drugs with cell membranes are of primary importance for several processes involved in drugs activity. However, these interactions are very difficult to study due to the complexity of biological membranes. Lipid model membranes have been developed and used to gain insight into drug-membrane interactions. In this study, the interaction of protocatechuic acid ethyl ester, showing radical-scavenging activity, antimicrobial, antitumor and anti-inflammatory effects, with model membranes constituted by multilamellar vesicles and monolayers made of DMPC and DSPC, has been studied. Differential scanning calorimetry and Langmuir-Blodgett techniques have been used. Protocatechuic acid ethyl ester interacted both with MLV and monolayers. However, a stronger interaction of the drug with DMPC-based model membranes has been obtained. The finding of this study could help to understand the protocatechuic acid ethyl ester action mechanism.

12.
Molecules ; 27(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35209120

RESUMO

(1) Background: Mangiferin (MGN) is a natural compound, showing anti-inflammatory and antioxidant activities for the potential treatment of eye diseases. The poor physicochemical features of MGN (low solubility and high instability) justify its nanoencapsulation into nanostructured lipid carriers (NLC) to improve its ocular bioavailability. (2) Methods: Firstly, MGN-NLC were prepared by the high shear homogenization coupled with the ultrasound (HSH-US) method. Finally, unloaded and MGN-loaded NLC were analyzed in terms of ocular tolerance. (3) Results: MGN-NLC showed good technological parameters suitable for ocular administration (particle size below 200 nm). The ORAC assay was performed to quantify the antioxidant activity of MGN, showing that the antioxidant activity of MGN-NLC (6494 ± 186 µM TE/g) was higher than that of the free compound (3521 ± 271 µM TE/g). This confirmed that the encapsulation of the drug was able to preserve and increase its activity. In ovo studies (HET-CAM) revealed that the formulation can be considered nonirritant. (4) Conclusions: Therefore, NLC systems are a promising approach for the ocular delivery of MGN.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanoestruturas/química , Nanotecnologia , Xantonas/administração & dosagem , Administração Oftálmica , Antioxidantes/administração & dosagem , Calorimetria , Olho/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Lipídeos/química , Estrutura Molecular , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Solubilidade , Análise Espectral
13.
Biomolecules ; 11(10)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34680118

RESUMO

Gastrointestinal cancers, particularly colorectal cancer, are mainly influenced by the dietary factor. A diet rich in fruits and vegetables can help to reduce the incidence of colorectal cancer thanks to the phenolic compounds, which possess antimutagenic and anticarcinogenic properties. Polyphenols, alongside their well-known antioxidant properties, also show a pro-oxidative potential, which makes it possible to sensitize tumor cells to oxidative stress. HO-1 combined with antioxidant activity, when overexpressed in cancer cells, is involved in tumor progression, and its inhibition is considered a feasible therapeutic strategy in cancer treatment. In this study, the effects of protocatechuic acid (PCA) on the viability of colon cancer cells (CaCo-2), annexin V, LDH release, reactive oxygen species levels, total thiol content, HO-1, γ-glutamylcysteine synthetase, and p21 expression were evaluated. PCA induced, in a dose-dependent manner, a significantly reduced cell viability of CaCo-2 by oxidative/antioxidant imbalance. The phenolic acid induced modifications in levels of HO-1, non-proteic thiol groups, γ-glutamylcysteine synthetase, reactive oxygen species, and p21. PCA induced a pro-oxidant effect in cancer cells, and the in vitro pro-apoptotic effect on CaCo-2 cells is mediated by the modulation of redox balance and the inhibition of the HO-1 system that led to the activation of p21. Our results suggest that PCA may represent a useful tool in prevention and/or therapy of colon cancer.


Assuntos
Apoptose , Neoplasias do Colo/patologia , Regulação para Baixo , Heme Oxigenase-1/genética , Hidroxibenzoatos/farmacologia , Estresse Oxidativo , Metabolismo Secundário , Regulação para Cima/genética , Apoptose/efeitos dos fármacos , Células CACO-2 , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glutamato-Cisteína Ligase/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Plantas/química , Espécies Reativas de Oxigênio/metabolismo , Compostos de Sulfidrila/metabolismo , Regulação para Cima/efeitos dos fármacos
14.
Pharmaceutics ; 13(7)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34371719

RESUMO

Lipid nanoparticles (LNPs) have been proposed as carriers for drug skin delivery and targeting. As LNPs effectiveness could be increased by the addition of chemical penetration enhancers (PE), in this work, the feasibility of incorporating PE into LNPs to improve idebenone (IDE) targeting to the skin was investigated. LNPs loading IDE 0.7% w/w were prepared using hydrophilic (propylene glycol, PG, 10% w/w or N-methylpyrrolidone, NMP, 10% w/w) and/or lipophilic PE (oleic acid, OA, 1% w/w; isopropyl myristate, IPM, 3.5% w/w; a mixture of 0.5% w/w OA and 2.5% w/w IPM). All LNPs showed small sizes (<60 nm), low polydispersity index and good stability. According to the obtained results, IDE release from LNPs was not the rate-limiting step in IDE skin penetration. No IDE permeation was observed through excised pigskin from all LNPs, while the greatest increase of IDE penetration into the different skin layers was obtained using the mixture OA/IPM. The antioxidant activity of IDE-loaded LNPs, determined by the oxygen radical absorbance capacity assay, was greater than that of free IDE. These results suggest that the use of suitable PE as LNPs components could be regarded as a promising strategy to improve drug targeting to the skin.

15.
Molecules ; 26(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34443491

RESUMO

Glycyrrhetic acid (GA) and stearyl glycyrrhetinate (SG) are two interesting compounds from Glycyrrhiza glabra, showing numerous biological properties widely applied in the pharmaceutical and cosmetic fields. Despite these appreciable benefits, their potential therapeutic properties are strongly compromised due to unfavourable physical-chemical features. The strategy exploited in the present work was to develop solid lipid nanoparticles (SLNs) as carrier systems for GA and SG delivery. Both formulations loaded with GA and SG (GA-SLNs and SG-SLNs, respectively) were prepared by the high shear homogenization coupled to ultrasound (HSH-US) method, and we obtained good technological parameters. DSC was used to evaluate their thermotropic behaviour and ability to act as carriers for GA and SG. The study was conducted by means of a biomembrane model (multilamellar vesicles; MLVs) that simulated the interaction of the carriers with the cellular membrane. Unloaded and loaded SLNs were incubated with the biomembranes, and their interactions were evaluated over time through variations in their calorimetric curves. The results of these studies indicated that GA and SG interact differently with MLVs and SLNs; the interactions of SG-SLNs and GA-SLNs with the biomembrane model showed different variations of the MLVs calorimetric curve and suggest the potential use of SLNs as delivery systems for GA.


Assuntos
Calorimetria , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/farmacologia , Lipídeos/química , Nanopartículas/química , Ácido Glicirretínico/química , Cinética , Membranas , Eletricidade Estática , Temperatura de Transição
16.
Colloids Surf B Biointerfaces ; 201: 111643, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33647709

RESUMO

The compound (+)-MR200 [(+)-methyl (1R,2S)-2-{[4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl]methyl}-1-phenylcyclopropanecarboxylate] is a selective sigma 1 (σ1) antagonist with antinociceptive effect, able to increase selective opioid receptor agonist-mediated analgesia. The parent compound (-)-MRV3 [(-)-methyl (1S,2R)-2-[(4-hydroxy-4-phenylpiperidin-1-yl)-methyl]-1-phenylcyclopropanecarboxylate], a σ1 antagonist with an improved σ1/σ2 selectivity respect to (+)-MR200, play a role in both central sensitization and pain hypersensitivity, suggesting a potential use of σ1 antagonists for the treatment of persistent pain conditions. With the intention to assessing the membrane absorption of compounds and their ability to cross it, the interaction of (+)-MR200 and (-)-MRV3 with dimyristoylphosphatidylcholine phospholipids (DMPC), used as biomembrane models was studied by Differential Scanning Calorimetry (DSC) and Langmuir-Blodgett (LB).


Assuntos
Dimiristoilfosfatidilcolina , Receptores sigma , Varredura Diferencial de Calorimetria , Humanos , Ligantes , Dor , Fosfolipídeos
17.
Nanomaterials (Basel) ; 11(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546352

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder associated with marked oxidative stress at the level of the brain. Recent studies indicate that increasing the antioxidant capacity could represent a very promising therapeutic strategy for AD treatment. Astaxanthin (AST), a powerful natural antioxidant, could be a good candidate for AD treatment, although its use in clinical practice is compromised by its high instability. In order to overcome this limit, our attention focused on the development of innovative AST-loaded stealth lipid nanoparticles (AST-SSLNs) able to improve AST bioavailability in the brain. AST-SSLNs prepared by solvent-diffusion technique showed technological parameters suitable for parenteral administration (<200 nm). Formulated nanosystems were characterized by calorimetric studies, while their toxicological profile was evaluated by the MTT assay on the stem cell line OECs (Olfactory Ensheathing Cells). Furthemore, the protective effect of the nanocarriers was assessed by a long-term stability study and a UV stability assay confirming that the lipid shell of the nanocarriers was able to preserve AST concentration in the formulation. SSLNs were also capable of preserving AST's antioxidant capacity as demonstrated in the oxygen radical absorbance capacity (ORAC) assay. In conclusion, these preliminary studies outline that SSLNs could be regarded as promising carriers for systemic administration of compounds such as AST aimed at AD treatment.

18.
Molecules ; 25(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629951

RESUMO

Curcumin (CUR) has a wide range of pharmacological properties, including anti-inflammatory and antioxidant activities, and it can be considered a good candidate for the potential treatment of central nervous system (CNS) pathologies, although its use in clinical practice is compromised due to its high lipophilicity. Solid lipid nanoparticles (SLNs) are well-known nanocarriers representing a consolidated approach for the delivery of lipophilic compounds, but their systemic use is limited due their short half-life. The formulation of stealth SLNs (pSLNs) could be a valid strategy to overcome this limit. Curcumin-loaded-pSLNs were prepared by the solvent evaporation method. Formulation was characterized for their mean size, zeta potential, size distribution, and morphology. Drug antioxidant activity was evaluated by Oxygen Radical Absorbance Capacity (ORAC) assay. Finally, the obtained formulations were analyzed in terms of long-term stability. Curcumin-loaded-pSLNs showed good technological parameters with a mean particle size below 200 nm, as confirmed by TEM images, and a zeta potential value around -30 mV, predicting good long-term stability. Differential Scanning Calorimetry (DSC) analysis confirmed that PEG micelles interacted with the SLN surface; this suggests the location of the PEG on the pSLN surface. Therefore, these preliminary studies suggest that the produced formulation could be regarded as a promising carrier for the systemic administration.


Assuntos
Curcumina/administração & dosagem , Curcumina/química , Portadores de Fármacos/química , Lipídeos/química , Nanopartículas/química , Polietilenoglicóis/química , Células-Tronco/efeitos dos fármacos , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Antioxidantes/administração & dosagem , Antioxidantes/química , Proliferação de Células , Células Cultivadas , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Humanos , Células-Tronco/citologia
19.
J Pharm Pharmacol ; 71(3): 329-337, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30456846

RESUMO

OBJECTIVES: Uridine was conjugated with fatty acids to improve the drug lipophilicity and the interaction with phospholipid bilayers. METHODS: The esterification reaction using carbodiimides compounds as coupling agents and a nucleophilic catalyst allowed us to synthesize tri-acyl ester derivatives of uridine with fatty acids. Analysis of molecular interactions between these tri-acyl ester derivatives and l-α-dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles (MLV) - as a mammalian cell membrane model - have been performed by differential scanning calorimetry (DSC). KEY FINDINGS: The DSC thermograms suggest that nucleoside and uridine triacetate softly interact with phospholipidic multilamellar vesicles which are predominantly located between the polar phase, whereas the tri-acyl ester derivatives with fatty acids (myristic and stearic acids) present a strongly interaction with the DMPC bilayer due to the nucleoside and aliphatic chains parts which are oriented towards the polar and lipophilic phases of the phospholipidic bilayer, respectively. However, the effects caused by the tri-myristoyl uridine and tri-stearoyl uridine are different. CONCLUSIONS: We show how the structural changes of uridine modulate the calorimetric behaviour of DMPC shedding light on their affinity with the phospholipidic biomembrane model.


Assuntos
Acetatos/química , Dimiristoilfosfatidilcolina/química , Ésteres/química , Membranas/química , Nucleosídeos/química , Uridina/análogos & derivados , Varredura Diferencial de Calorimetria/métodos , Ácidos Graxos/química , Modelos Teóricos , Fosfolipídeos/química , Uridina/química
20.
Pharmaceuticals (Basel) ; 11(4)2018 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-30558360

RESUMO

Differential scanning calorimetry (DSC) has emerged as a helpful technique both to characterize drug delivery systems and to study their interactions with bio-membranes. In this work, we compared idebenone (IDE)-loaded solid lipid nanoparticle (SLN) interactions with bio-membranes assessed by DSC with previous in vitro skin penetration data to evaluate the feasibility of predicting IDE skin penetration using DSC analyses. In vitro interactions experiments were performed using multi-lamellar liposomes as a model of bio-membrane. Enthalpy changes (ΔH) and transition temperature (Tm) were assessed during nine repeated DSC scans to evaluate IDE-loaded SLN⁻bio-membrane interactions over time. Analyzing ΔH and Tm values for each scan, we observed that the difference of ΔH and Tm values between the first and the last scan seemed to be related to SLN ability to locate IDE in the epidermis and in the stratum corneum, respectively. Therefore, the results of this study suggest the possibility of qualitatively predicting in vitro IDE skin penetration from IDE-loaded SLN utilizing the calorimetric parameters obtained from interaction experiments between the carriers under investigation and a model of bio-membrane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...