Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 625(7996): 788-796, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029793

RESUMO

The expansion of the neocortex, a hallmark of mammalian evolution1,2, was accompanied by an increase in cerebellar neuron numbers3. However, little is known about the evolution of the cellular programmes underlying the development of the cerebellum in mammals. In this study we generated single-nucleus RNA-sequencing data for around 400,000 cells to trace the development of the cerebellum from early neurogenesis to adulthood in human, mouse and the marsupial opossum. We established a consensus classification of the cellular diversity in the developing mammalian cerebellum and validated it by spatial mapping in the fetal human cerebellum. Our cross-species analyses revealed largely conserved developmental dynamics of cell-type generation, except for Purkinje cells, for which we observed an expansion of early-born subtypes in the human lineage. Global transcriptome profiles, conserved cell-state markers and gene-expression trajectories across neuronal differentiation show that cerebellar cell-type-defining programmes have been overall preserved for at least 160 million years. However, we also identified many orthologous genes that gained or lost expression in cerebellar neural cell types in one of the species or evolved new expression trajectories during neuronal differentiation, indicating widespread gene repurposing at the cell-type level. In sum, our study unveils shared and lineage-specific gene-expression programmes governing the development of cerebellar cells and expands our understanding of mammalian brain evolution.


Assuntos
Cerebelo , Evolução Molecular , Mamíferos , Neurogênese , Animais , Humanos , Camundongos , Linhagem da Célula/genética , Cerebelo/citologia , Cerebelo/embriologia , Cerebelo/crescimento & desenvolvimento , Feto/citologia , Feto/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Gambás/embriologia , Gambás/crescimento & desenvolvimento , Células de Purkinje/citologia , Células de Purkinje/metabolismo , Análise da Expressão Gênica de Célula Única , Especificidade da Espécie , Transcriptoma , Mamíferos/embriologia , Mamíferos/crescimento & desenvolvimento
2.
Science ; 382(6670): eadf1046, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37917687

RESUMO

Sexually dimorphic traits are common among mammals and are specified during development through the deployment of sex-specific genetic programs. Because little is known about these programs, we investigated them using a resource of gene expression profiles in males and females throughout the development of five organs in five mammals (human, mouse, rat, rabbit, and opossum) and a bird (chicken). We found that sex-biased gene expression varied considerably across organs and species and was often cell-type specific. Sex differences increased abruptly around sexual maturity instead of increasing gradually during organ development. Finally, sex-biased gene expression evolved rapidly at the gene level, with differences between organs in the evolutionary mechanisms used, but more slowly at the cellular level, with the same cell types being sexually dimorphic across species.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos , Organogênese , Caracteres Sexuais , Animais , Feminino , Humanos , Masculino , Camundongos , Coelhos , Ratos , Galinhas , Mamíferos/genética , Mamíferos/crescimento & desenvolvimento , RNA-Seq , Transcriptoma , Organogênese/genética
3.
Neuro Oncol ; 25(10): 1895-1909, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37534924

RESUMO

BACKGROUND: Distinguishing the cellular origins of childhood brain tumors is key for understanding tumor initiation and identifying lineage-restricted, tumor-specific therapeutic targets. Previous strategies to map the cell-of-origin typically involved comparing human tumors to murine embryonal tissues, which is potentially limited due to species-specific differences. The aim of this study was to unravel the cellular origins of the 3 most common pediatric brain tumors, ependymoma, pilocytic astrocytoma, and medulloblastoma, using a developing human cerebellar atlas. METHODS: We used a single-nucleus atlas of the normal developing human cerebellum consisting of 176 645 cells as a reference for an in-depth comparison to 4416 bulk and single-cell transcriptome tumor datasets, using gene set variation analysis, correlation, and single-cell matching techniques. RESULTS: We find that the astroglial cerebellar lineage is potentially the origin for posterior fossa ependymomas. We propose that infratentorial pilocytic astrocytomas originate from the oligodendrocyte lineage and MHC II genes are specifically enriched in these tumors. We confirm that SHH and Group 3/4 medulloblastomas originate from the granule cell and unipolar brush cell lineages. Radiation-induced gliomas stem from cerebellar glial lineages and demonstrate distinct origins from the primary medulloblastoma. We identify tumor genes that are expressed in the cerebellar lineage of origin, and genes that are tumor specific; both gene sets represent promising therapeutic targets for future study. CONCLUSION: Based on our results, individual cells within a tumor may resemble different cell types along a restricted developmental lineage. Therefore, we suggest that tumors can arise from multiple cellular states along the cerebellar "lineage of origin."


Assuntos
Astrocitoma , Neoplasias Encefálicas , Neoplasias Cerebelares , Ependimoma , Glioma , Meduloblastoma , Criança , Humanos , Animais , Camundongos , Meduloblastoma/genética , Meduloblastoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/patologia , Astrocitoma/genética , Ependimoma/genética , Ependimoma/patologia , Cerebelo/patologia , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia
4.
Science ; 373(6558)2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34446581

RESUMO

Organ development is orchestrated by cell- and time-specific gene regulatory networks. In this study, we investigated the regulatory basis of mouse cerebellum development from early neurogenesis to adulthood. By acquiring snATAC-seq (single-nucleus assay for transposase accessible chromatin using sequencing) profiles for ~90,000 cells spanning 11 stages, we mapped cerebellar cell types and identified candidate cis-regulatory elements (CREs). We detected extensive spatiotemporal heterogeneity among progenitor cells and a gradual divergence in the regulatory programs of cerebellar neurons during differentiation. Comparisons to vertebrate genomes and snATAC-seq profiles for ∼20,000 cerebellar cells from the marsupial opossum revealed a shared decrease in CRE conservation during development and differentiation as well as differences in constraint between cell types. Our work delineates the developmental and evolutionary dynamics of gene regulation in cerebellar cells and provides insights into mammalian organ development.


Assuntos
Evolução Biológica , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Neurônios/fisiologia , Elementos Reguladores de Transcrição , Animais , Cerebelo/embriologia , Cromatina/genética , Cromatina/metabolismo , DNA Intergênico , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Masculino , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Neurogênese , Gambás/genética
5.
Cell Rep ; 33(4): 108308, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33113372

RESUMO

Identifying the molecular programs underlying human organ development and how they differ from model species is key for understanding human health and disease. Developmental gene expression profiles provide a window into the genes underlying organ development and a direct means to compare them across species. We use a transcriptomic resource covering the development of seven organs to characterize the temporal profiles of human genes associated with distinct disease classes and to determine, for each human gene, the similarity of its spatiotemporal expression with its orthologs in rhesus macaque, mouse, rat, and rabbit. We find clear associations between spatiotemporal profiles and the phenotypic manifestations of diseases. We also find that half of human genes differ from their mouse orthologs in their temporal trajectories in at least one of the organs. These include more than 200 genes associated with brain, heart, and liver disease for which mouse models should undergo extra scrutiny.


Assuntos
Perfilação da Expressão Gênica/métodos , Transcriptoma/genética , Animais , Humanos , Mamíferos , Modelos Animais
6.
Cell Rep ; 31(1): 107465, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32268084

RESUMO

TP53 deficiency is the most common alteration in cancer; however, this alone is typically insufficient to drive tumorigenesis. To identify genes promoting tumorigenesis in combination with TP53 deficiency, we perform genome-wide CRISPR-Cas9 knockout screens coupled with proliferation and transformation assays in isogenic cell lines. Loss of several known tumor suppressors enhances cellular proliferation and transformation. Loss of neddylation pathway genes promotes uncontrolled proliferation exclusively in TP53-deficient cells. Combined loss of CUL3 and TP53 activates an oncogenic transcriptional program governed by the nuclear factor κB (NF-κB), AP-1, and transforming growth factor ß (TGF-ß) pathways. This program maintains persistent cellular proliferation, induces partial epithelial to mesenchymal transition, and increases DNA damage, genomic instability, and chromosomal rearrangements. Our findings reveal CUL3 loss as a key event stimulating persistent proliferation in TP53-deficient cells. These findings may be clinically relevant, since TP53-CUL3-deficient cells are highly sensitive to ataxia telangiectasia mutated (ATM) inhibition, exposing a vulnerability that could be exploited for cancer treatment.


Assuntos
Proteínas Culina/genética , Proteína Supressora de Tumor p53/genética , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carcinogênese/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Proteínas Culina/metabolismo , Transição Epitelial-Mesenquimal , Estudo de Associação Genômica Ampla , Instabilidade Genômica , Humanos , NF-kappa B/metabolismo , Epitélio Pigmentado da Retina/citologia , Fator de Crescimento Transformador beta/metabolismo , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/metabolismo
7.
Nature ; 571(7766): 510-514, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31243368

RESUMO

Although many long noncoding RNAs (lncRNAs) have been identified in human and other mammalian genomes, there has been limited systematic functional characterization of these elements. In particular, the contribution of lncRNAs to organ development remains largely unexplored. Here we analyse the expression patterns of lncRNAs across developmental time points in seven major organs, from early organogenesis to adulthood, in seven species (human, rhesus macaque, mouse, rat, rabbit, opossum and chicken). Our analyses identified approximately 15,000 to 35,000 candidate lncRNAs in each species, most of which show species specificity. We characterized the expression patterns of lncRNAs across developmental stages, and found many with dynamic expression patterns across time that show signatures of enrichment for functionality. During development, there is a transition from broadly expressed and conserved lncRNAs towards an increasing number of lineage- and organ-specific lncRNAs. Our study provides a resource of candidate lncRNAs and their patterns of expression and evolutionary conservation across mammalian organ development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Especificidade de Órgãos/genética , Organogênese/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Especificidade da Espécie , Animais , Atlas como Assunto , Galinhas/genética , Evolução Molecular , Feminino , Humanos , Macaca mulatta/genética , Masculino , Camundongos , Gambás/genética , Proteínas/genética , RNA Longo não Codificante/análise , Coelhos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...