Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Neuropsychol ; 18 Suppl 1: 91-114, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37431064

RESUMO

Patients with unilateral spatial neglect (USN) are unable to explore or to report stimuli presented in the left personal and extra-personal space. USN is usually caused by lesion of the right parietal lobe: nowadays, it is also clear the key role of structural connections (the second and the third branch of the right Superior Longitudinal Fasciculus, respectively, SLF II and III) and functional networks (Dorsal and Ventral Attention Network, respectively, DAN and VAN) in USN. In this multimodal case report, we have merged those structural and functional information derived from a patient with a right parietal lobe tumour and USN before surgery. Functional, structural and neuropsychological data were also collected 6 months after surgery, when the USN was spontaneously recovered. Diffusion metrics and Functional Connectivity (FC) of the right SLF and DAN, before and after surgery, were compared with the same data of a patient with a tumour in a similar location, but without USN, and with a control sample. Results indicate an impairment in the right SLF III and a reduction of FC of the right DAN in patients with USN before surgery compared to controls; after surgery, when USN was recovered, patient's diffusion metrics and FC showed no differences compared to the controls. This single case and its multimodal approach reinforce the crucial role of the right SLF III and DAN in the development and recovery of egocentric and allocentric extra-personal USN, highlighting the need to preserve these structural and functional areas during brain surgery.


Assuntos
Neoplasias Encefálicas , Transtornos da Percepção , Acidente Vascular Cerebral , Humanos , Imageamento por Ressonância Magnética/efeitos adversos , Encéfalo/patologia , Transtornos da Percepção/diagnóstico por imagem , Transtornos da Percepção/etiologia , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/cirurgia , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/cirurgia , Lateralidade Funcional , Acidente Vascular Cerebral/complicações
2.
Brain ; 147(3): 1100-1111, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38048613

RESUMO

Neurological and neurodevelopmental conditions are a major public health concern for which new therapies are urgently needed. The development of effective therapies relies on the precise mapping of the neural substrates causally involved in behaviour generation. Direct electrical stimulation (DES) performed during cognitive and neurological monitoring in awake surgery is currently considered the gold standard for the causal mapping of brain functions. However, DES is limited by the focal nature of the stimulation sites, hampering a real holistic exploration of human brain functions at the network level. We used 4137 DES points derived from 612 glioma patients in combination with human connectome data-resting-state functional MRI, n = 1000 and diffusion weighted imaging, n = 284-to provide a multimodal description of the causal macroscale functional networks subtending 12 distinct behavioural domains. To probe the validity of our procedure, we (i) compared the network topographies of healthy and clinical populations; (ii) tested the predictive capacity of DES-derived networks; (iii) quantified the coupling between structural and functional connectivity; and (iv) built a multivariate model able to quantify single subject deviations from a normative population. Lastly, we probed the translational potential of DES-derived functional networks by testing their specificity and sensitivity in identifying critical neuromodulation targets and neural substrates associated with postoperative language deficits. The combination of DES and human connectome data resulted in an average 29.4-fold increase in whole brain coverage compared to DES alone. DES-derived functional networks are predictive of future stimulation points (97.8% accuracy) and strongly supported by the anatomical connectivity of subcortical stimulations. We did not observe any significant topographical differences between the patients and the healthy population at both group and single subject level. Showcasing concrete clinical applications, we found that DES-derived functional networks overlap with effective neuromodulation targets across several functional domains, show a high degree of specificity when tested with the intracranial stimulation points of a different stimulation technique and can be used effectively to characterize postoperative behavioural deficits. The integration of DES with the human connectome fundamentally advances the quality of the functional mapping provided by DES or functional imaging alone. DES-derived functional networks can reliably predict future stimulation points, have a strong correspondence with the underlying white matter and can be used for patient specific functional mapping. Possible applications range from psychiatry and neurology to neuropsychology, neurosurgery and neurorehabilitation.


Assuntos
Neoplasias Encefálicas , Conectoma , Estimulação Encefálica Profunda , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Vigília , Encéfalo/diagnóstico por imagem
3.
Front Neuroanat ; 17: 1242757, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38099209

RESUMO

Modern neuroscience agrees that neurological processing emerges from the multimodal interaction among multiple cortical and subcortical neuronal hubs, connected at short and long distance by white matter, to form a largely integrated and dynamic network, called the brain "connectome." The final architecture of these circuits results from a complex, continuous, and highly protracted development process of several axonal pathways that constitute the anatomical substrate of neuronal interactions. Awareness of the network organization of the central nervous system is crucial not only to understand the basis of children's neurological development, but also it may be of special interest to improve the quality of neurosurgical treatments of many pediatric diseases. Although there are a flourishing number of neuroimaging studies of the connectome, a comprehensive vision linking this research to neurosurgical practice is still lacking in the current pediatric literature. The goal of this review is to contribute to bridging this gap. In the first part, we summarize the main current knowledge concerning brain network maturation and its involvement in different aspects of normal neurocognitive development as well as in the pathophysiology of specific diseases. The final section is devoted to identifying possible implications of this knowledge in the neurosurgical field, especially in epilepsy and tumor surgery, and to discuss promising perspectives for future investigations.

4.
Med Image Anal ; 90: 102893, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37741032

RESUMO

A tractogram is a virtual representation of the brain white matter. It is composed of millions of virtual fibers, encoded as 3D polylines, which approximate the white matter axonal pathways. To date, tractograms are the most accurate white matter representation and thus are used for tasks like presurgical planning and investigations of neuroplasticity, brain disorders, or brain networks. However, it is a well-known issue that a large portion of tractogram fibers is not anatomically plausible and can be considered artifacts of the tracking procedure. With Verifyber, we tackle the problem of filtering out such non-plausible fibers using a novel fully-supervised learning approach. Differently from other approaches based on signal reconstruction and/or brain topology regularization, we guide our method with the existing anatomical knowledge of the white matter. Using tractograms annotated according to anatomical principles, we train our model, Verifyber, to classify fibers as either anatomically plausible or non-plausible. The proposed Verifyber model is an original Geometric Deep Learning method that can deal with variable size fibers, while being invariant to fiber orientation. Our model considers each fiber as a graph of points, and by learning features of the edges between consecutive points via the proposed sequence Edge Convolution, it can capture the underlying anatomical properties. The output filtering results highly accurate and robust across an extensive set of experiments, and fast; with a 12GB GPU, filtering a tractogram of 1M fibers requires less than a minute.

6.
Brain Behav ; 13(8): e3107, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37280786

RESUMO

BACKGROUND: Two Centuries from today, Karl Friedrich Burdach attributed the nomenclature "arcuate fasciculus" to a white matter (WM) pathway connecting the frontal to the temporal cortices by arching around the Sylvian fissure. Although this label remained essentially unvaried, the concepts related to it and the characterization of the structural properties of this bundle evolved along with the methodological progress of the past years. Concurrently, the functional relevance of the arcuate fasciculus (AF) classically restricted to the linguistic domain has extended to further cognitive abilities. These features make it a relevant structure to consider in a large variety of neurosurgical procedures. OBJECTIVE: Herein, we build on our previous review uncovering the connectivity provided by the Superior Longitudinal System, including the AF, and provide a handy representation of the structural organization of the AF by considering the frequency of defined reports in the literature. By adopting the same approach, we implement an account of which functions are mediated by this WM bundle. We highlight how this information can be transferred to the neurosurgical field by presenting four surgical cases of glioma resection requiring the evaluation of the relationship between the AF and the nearby structures, and the safest approaches to adopt. CONCLUSIONS: Our cumulative overview reports the most common wiring patterns and functional implications to be expected when approaching the study of the AF, while still considering seldom descriptions as an account of interindividual variability. Given its extension and the variety of cortical territories it reaches, the AF is a pivotal structure for different cognitive functions, and thorough understanding of its structural wiring and the functions it mediates is necessary for preserving the patient's cognitive abilities during glioma resection.


Assuntos
Glioma , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/cirurgia , Vias Neurais/cirurgia , Córtex Cerebral , Glioma/diagnóstico por imagem , Glioma/cirurgia , Lobo Temporal
7.
J Neurooncol ; 162(2): 267-293, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36961622

RESUMO

PURPOSE: The extent of resection (EOR) is an independent prognostic factor for overall survival (OS) in adult patients with Glioma Grade 4 (GG4). The aim of the neuro-oncology section of the Italian Society of Neurosurgery (SINch®) was to provide a general overview of the current trends and technical tools to reach this goal. METHODS: A systematic review was performed. The results were divided and ordered, by an expert team of surgeons, to assess the Class of Evidence (CE) and Strength of Recommendation (SR) of perioperative drugs management, imaging, surgery, intraoperative imaging, estimation of EOR, surgery at tumor progression and surgery in elderly patients. RESULTS: A total of 352 studies were identified, including 299 retrospective studies and 53 reviews/meta-analysis. The use of Dexamethasone and the avoidance of prophylaxis with anti-seizure medications reached a CE I and SR A. A preoperative imaging standard protocol was defined with CE II and SR B and usefulness of an early postoperative MRI, with CE II and SR B. The EOR was defined the strongest independent risk factor for both OS and tumor recurrence with CE II and SR B. For intraoperative imaging only the use of 5-ALA reached a CE II and SR B. The estimation of EOR was established to be fundamental in planning postoperative adjuvant treatments with CE II and SR B and the stereotactic image-guided brain biopsy to be the procedure of choice when an extensive surgical resection is not feasible (CE II and SR B). CONCLUSIONS: A growing number of evidences evidence support the role of maximal safe resection as primary OS predictor in GG4 patients. The ongoing development of intraoperative techniques for a precise real-time identification of peritumoral functional pathways enables surgeons to maximize EOR minimizing the post-operative morbidity.


Assuntos
Neoplasias Encefálicas , Glioma , Neurocirurgia , Adulto , Idoso , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Glioma/diagnóstico por imagem , Glioma/cirurgia , Glioma/patologia , Imageamento por Ressonância Magnética , Recidiva Local de Neoplasia , Estudos Retrospectivos
8.
Neuropsychologia ; 181: 108490, 2023 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-36693520

RESUMO

We administered to large groups of patients with neoplastic or degenerative damage affecting the right or left ATL, the 'Famous People Recognition Battery' (FPRB), in which subjects are required to recognize the same 40 famous people through their faces, voices and names, to clarify which components of famous people recognition are lateralized. At the familiarity level, we found, as expected, a dissociation between a greater impairment of patients with right ATL lesions on the non-verbal (face and voice) recognition modalities and of those with left ATL lesions on name familiarity. Equally expected were results obtained at the naming level, because the worse naming scores for faces and voices were observed in left-sided patients. Less foregone were, for two reasons, results obtained at the semantic level. First, no difference was found between the two hemispheric groups when scores obtained on the verbal (name) and non-verbal (face and voice) recognition modalities were account for. Second, the face and voice recognition modalities showed a different degree of right lateralization. All groups of patients showed, indeed, both at the familiarity and at the semantic level, a greater difficulty in the recognition of voices regarding faces, but this difference reached significance only in patients with right ATL lesions, suggesting a greater right lateralization of the more complex task of voice recognition. A model aiming to explain the greater right lateralization of the more perceptually demanding voice modality of person recognition is proposed.


Assuntos
Reconhecimento Psicológico , Voz , Humanos , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia , Cabeça , Face , Semântica , Testes Neuropsicológicos
10.
Brain Struct Funct ; 228(1): 103-120, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35995880

RESUMO

The angular gyrus (AG) has been described in numerous studies to be consistently activated in various functional tasks. The angular gyrus is a critical connector epicenter linking multiple functional networks due to its location in the posterior part of the inferior parietal cortex, namely at the junction between the parietal, temporal, and occipital lobes. It is thus crucial to identify the different pathways that anatomically connect this high-order association region to the rest of the brain. Our study revisits the three-dimensional architecture of the structural AG connectivity by combining state-of-the-art postmortem blunt microdissection with advanced in vivo diffusion tractography to comprehensively describe the association, projection, and commissural fibers that connect the human angular gyrus. AG appears as a posterior "angular stone" of associative connections belonging to mid- and long-range dorsal and ventral fibers of the superior and inferior longitudinal systems, respectively, to short-range parietal, occipital, and temporal fibers, including U-shaped fibers in the posterior transverse system. Thus, AG is at a pivotal dorso-ventral position reflecting its critical role in the different functional networks, particularly in language elaboration and spatial attention and awareness in the left and right hemispheres, respectively. We also reveal striatal, thalamic, and brainstem connections and a typical inter-hemispheric homotopic callosal connectivity supporting the suggested AG role in the integration of sensory input for modulating motor control and planning. The present description of AG's highly distributed wiring diagram may drastically improve intraoperative subcortical testing and post-operative neurologic outcomes related to surgery in and around the angular gyrus.


Assuntos
Imagem de Tensor de Difusão , Microdissecção , Humanos , Imagem de Tensor de Difusão/métodos , Vias Neurais , Processamento de Imagem Assistida por Computador , Lobo Parietal
11.
Cereb Cortex Commun ; 3(3): tgac031, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072709

RESUMO

We constantly face situations involving interactions with others that require us to automatically adjust our physical distances to avoid discomfort or anxiety. A previous case study has demonstrated that the integrity of both amygdalae is essential to regulate interpersonal distances. Despite unilateral lesion to the amygdala, as to other sectors of the medial temporal cortex, are known to also affect social behavior, their role in the regulation of interpersonal distances has never been investigated. Here, we sought to fill this gap by testing three patients with unilateral temporal lesions following surgical resections, including one patient with a lesion mainly centered on the amygdala and two with lesions to adjacent medial temporal cortex, on two versions of the stop distance paradigm (i.e. in a virtual reality environment and in a real setting). Our results showed that all three patients set shorter interpersonal distances compared to neurotypical controls. In addition, compared to controls, none of the patients adjusted such physical distances depending on facial emotional expressions, despite they preserved ability to categorize them. Finally, patients' heart rate responses differed from controls when viewing approaching faces. Our findings bring compelling evidence that unilateral lesions within the medial temporal cortex, not necessarily restricted to the amygdala, are sufficient to alter interpersonal distance, thus shedding new light on the neural circuitry regulating distance in social interactions.

12.
Neuroimage Clin ; 36: 103149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35970113

RESUMO

Phonemic and semantic fluency are neuropsychological tests widely used to assess patients' language and executive abilities and are highly sensitive tests in detecting language deficits in glioma patients. However, the networks that are involved in these tasks could be distinct and suggesting either a frontal (phonemic) or temporal (semantic) involvement. 42 right-handed patients (26 male, mean age = 52.5 years, SD=±13.3) were included in this retrospective study. Patients underwent awake (54.8%) or asleep (45.2%) surgery for low-grade (16.7%) or high-grade-glioma (83.3%) in the frontal (64.3%) or temporal lobe (35.7%) of the left (50%) or right (50%) hemisphere. Pre-operative tractography was reconstructed for each patient, with segmentation of the inferior fronto-occipital fasciculus (IFOF), arcuate fasciculus (AF), uncinate fasciculus (UF), inferior longitudinal fasciculus (ILF), third branch of the superior longitudinal fasciculus (SLF-III), frontal aslant tract (FAT), and cortico-spinal tract (CST). Post-operative percentage of damage and disconnection of each tract, based on the patients' surgical cavities, were correlated with verbal fluencies scores at one week and one month after surgery. Analyses of differences between fluency scores at these timepoints (before surgery, one week and one month after surgery) were performed; lesion-symptom mapping was used to identify the correlation between cortical areas and post-operative scores. Immediately after surgery, a transient impairment of verbal fluency was observed, that improved within a month. Left hemisphere lesions were related to a worse verbal fluency performance, being a damage to the left superior frontal or temporal gyri associated with phonemic or semantic fluency deficit, respectively. At a subcortical level, disconnection analyses revealed that fluency scores were associated to the involvement of the left FAT and the left frontal part of the IFOF for phonemic fluency, and the association was still present one month after surgery. For semantic fluency, the correlation between post-surgery performance emerged for the left AF, UF, ILF and the temporal part of the IFOF, but disappeared at the follow-up. This approach based on the patients' pre-operative tractography, allowed to trace for the first time a dissociation between white matter pathways integrity and verbal fluency after surgery for glioma resection. Our results confirm the involvement of a frontal anterior pathway for phonemic fluency and a ventral temporal pathway for semantic fluency. Finally, our longitudinal results suggest that the frontal executive pathway requires a longer interval to recover compared to the semantic one.


Assuntos
Mapeamento Encefálico , Glioma , Humanos , Masculino , Pessoa de Meia-Idade , Mapeamento Encefálico/métodos , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia , Estudos Retrospectivos , Glioma/patologia , Semântica
13.
Neurooncol Pract ; 9(4): 328-337, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35855456

RESUMO

Background: People with gliomas need specialized neurosurgical, neuro-oncological, psycho-oncological, and neuropsychological care. The role of language and cognitive recovery and rehabilitation in patients' well-being and resumption of work is crucial, but there are no clear guidelines for the ideal timing and character of assessments and interventions. The goal of the present work was to describe representative (neuro)psychological practices implemented after brain surgery in Europe. Methods: An online survey was addressed to professionals working with individuals after brain surgery. We inquired about the assessments and interventions and the involvement of caregivers. Additionally, we asked about recommendations for an ideal assessment and intervention plan. Results: Thirty-eight European centers completed the survey. Thirty of them offered at least one postsurgical (neuro)psychological assessment, mainly for language and cognition, especially during the early recovery stage and at long term. Twenty-eight of the participating centers offered postsurgical therapies. Patients who stand the highest chances of being included in evaluation and therapy postsurgically are those who underwent awake brain surgery, harbored a low-grade glioma, or showed poor recovery. Nearly half of the respondents offer support programs to caregivers, and all teams recommend them. Treatments differed between those offered to individuals with low-grade glioma vs those with high-grade glioma. The figure of caregiver is not yet fully recognized in the recovery phase. Conclusion: We stress the need for more complete rehabilitation plans, including the emotional and health-related aspects of recovery. In respondents' opinions, assessment and rehabilitation plans should also be individually tailored and goal-directed (eg, professional reinsertion).

15.
Brain Struct Funct ; 227(9): 2923-2937, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35460446

RESUMO

The study of patients after glioma resection offers a unique opportunity to investigate brain reorganization. It is currently unknown how the whole-brain connectomic profile evolves longitudinally after surgical resection of a glioma and how this may be associated with tumor characteristics and cognitive outcome. In this longitudinal study, we investigate the impact of tumor lateralization and grade on functional connectivity (FC) in highly connected networks, or hubs, and cognitive performance. Twenty-eight patients (17 high-grade, 11 low-grade gliomas) underwent longitudinal pre/post-surgery resting-state fMRI scans and neuropsychological assessments (73 total measures). FC matrices were constructed considering as functional hubs the default mode (DMN) and fronto-parietal networks. No-hubs included primary sensory functional networks and any other no-hubs nodes. Both tumor hemisphere and grade affected brain reorganization post-resection. In right-hemisphere tumor patients, regardless of grade and relative to left-hemisphere gliomas, FC increased longitudinally after the intervention, both in terms of FC within hubs (phubs = 0.0004) and FC between hubs and no-hubs (phubs-no-hubs = 0.005). Regardless of tumor side, only lower-grade gliomas showed longitudinal FC increases relative to high-grade tumors within a precise hub network, the DMN. The neurocognitive profile was longitudinally associated with spatial features of the connectome, mainly within the DMN. We provide evidence that clinical glioma features, such as lateralization and grade, affect post-surgical longitudinal functional reorganization and cognitive recovery. The data suggest a possible role of the DMN in supporting cognition, providing useful information for prognostic prediction and surgical planning.


Assuntos
Glioma , Rede Nervosa , Humanos , Estudos Longitudinais , Rede de Modo Padrão , Glioma/diagnóstico por imagem , Glioma/cirurgia , Glioma/patologia , Encéfalo/patologia , Imageamento por Ressonância Magnética , Mapeamento Encefálico
17.
Brain Struct Funct ; 226(8): 2479-2480, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34283295
18.
J Neurosurg Sci ; 65(6): 605-615, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33940782

RESUMO

Since its first description in the early 19th century, the inferior fronto-occipital fascicle (IFOF) and its anatomo-functional features were neglected in the neuroscientific literature for the last century. In the last decade, the rapid development of in-vivo imaging for the reconstruction of white matter (WM) connectivity (i.e., tractography) and the consequent interest in more traditional ex vivo methods (post-mortem dissection) have allowed a renewed debate about course, termination territories, anatomical relationships, and functional roles of this fascicle. We reviewed the main current knowledge concerning the structural and functional anatomy of the IFOF and possible implications in neurosurgical practice. The IFOF connects the occipital cortex, the temporo-basal areas, the superior parietal lobule, and the precuneus to the frontal lobe, passing through the ventral third of subinsular WM of the external capsule. This wide distribution of cortical terminations provides multimodal integration between several functional networks, including language, non-verbal semantic processing, object identification, visuo-spatial processing and planning, reading, facial expression recognition, memory and conceptualization, emotional and neuropsychological behavior. This anatomo-functional organization has important implication also in neurosurgical practice, especially when approaching the frontal, insular, temporo-parieto-occipital regions and the ventricular system. In conclusion, the IFOF is the most extensive associative bundle of the human connectome. Its multi-layer organization reflects important implications in many aspects of brain functional processing. Accurate awareness of IFOF functional anatomy and integration between multimodal datasets coming from different sources has crucial implications for both neuroscientific knowledge and quality of neurosurgical treatments.


Assuntos
Conectoma , Neurocirurgia , Substância Branca , Lobo Frontal , Humanos , Vias Neurais , Lobo Occipital
19.
Brain Struct Funct ; 226(5): 1363-1384, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33881634

RESUMO

The description of human white matter pathways experienced a tremendous improvement, thanks to the advancement of neuroimaging and dissection techniques. The downside of this progress is the production of redundant and conflicting literature, bound by specific studies' methods and aims. The Superior Longitudinal System (SLS), encompassing the arcuate (AF) and the superior longitudinal fasciculi (SLF), becomes an illustrative example of this fundamental issue, being one of the most studied white matter association pathways of the brain. Herein, we provide a complete illustration of this white matter fiber system's current definition, from its early descriptions in the nineteenth century to its most recent characterizations. We propose a review of both in vivo diffusion magnetic resonance imaging-based tractography and anatomical dissection studies, enclosing all the information available up to date. Based on these findings, we reconstruct the wiring diagram of the SLS, highlighting a substantial variability in the description of its cortical sites of termination and the taxonomy and partonomy that characterize the system. We aim to level up discrepancies in the literature by proposing a parallel across the various nomenclature. Consistent with the topographical arrangement already documented for commissural and projection pathways, we suggest approaching the SLS organization as an orderly and continuous wiring diagram, respecting a medio-lateral palisading topography between the different frontal, parietal, occipital, and temporal gyri rather than in terms of individualized fascicles. A better and complete description of the fine organization of white matter association pathways' connectivity is fundamental for a better understanding of brain function and their clinical and neurosurgical applications.


Assuntos
Encéfalo , Imagem de Tensor de Difusão , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...