Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(48): 31402-31411, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36348995

RESUMO

A pH responsive nanoparticle-hydrogel hybrid drug delivery system was investigated for in-depth anticancer drug delivery to solid tumours. It consists of acid susceptible polymer nanoparticles loaded in a chitosan hydrogel. The hybrid formulation was characterized by UV-visible spectroscopy, FTIR, SEM, TEM, particle size analysis, zeta potential measurement and viscosity measurement. Drug encapsulation and nanoparticle loading efficiencies were found to be 48% and 72% respectively which describes the efficient interaction of the chemical entities in this hybrid drug delivery system. The hydrogel exhibited pH responsive behaviour: minimal drug and nanoparticle release at physiological pH but an increase in viscosity under acidic conditions and fast nanoparticle and drug release. The cytotoxicity of the drug loaded hydrogel was investigated against the MCF-7 breast cancer cell line along with the drug and nanoparticles without hydrogel. The drug loaded hydrogel showed a better cytotoxic effect on MCF-7 cancer cells. Thus, drug loaded nanoparticles containing hydrogel could be a better option for maximum drug distribution in tumours.

2.
Expert Opin Drug Deliv ; 18(1): 1-24, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32905714

RESUMO

INTRODUCTION: The utilization of polymeric nanoparticles, as drug payloads, has been extensively prevailed in cancer therapy. However, the precise distribution of these nanocarriers is restrained by various physiological and cellular obstacles. Nanoparticles must avoid nonspecific interactions with healthy cells and in vivo compartments to circumvent these barriers. Since in vivo interactions of nanoparticles are mainly dependent on surface properties of nanoparticles, efficient control on surface constituents is necessary for the determination of nanoparticles' fate in the body. AREAS COVERED: In this review, the surface-modified polymeric nanoparticles and their utilization in cancer treatment were elaborated. First, the interaction of nanoparticles with numerous in vivo barriers was highlighted. Second, different strategies to overcome these obstacles were described. Third, some inspiring examples of surface-modified nanoparticles were presented. Later, fabrication and characterization methods of surface-modified nanoparticles were discussed. Finally, the applications of these nanoparticles in different routes of treatments were explored. EXPERT OPINION: Surface modification of anticancer drug-loaded polymeric nanoparticles can enhance the efficacy, selective targeting, and biodistribution of the anticancer drug at the tumor site.


Assuntos
Nanopartículas , Neoplasias , Preparações Farmacêuticas , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Polímeros/uso terapêutico , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA