Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 108(4-1): 044110, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37978655

RESUMO

We study a system of equal-size circular disks, each with an asymmetrically placed pivot at a fixed distance from the center. The pivots are fixed at the vertices of a regular triangular lattice. The disks can rotate freely about the pivots, with the constraint that no disks can overlap with each other. Our Monte Carlo simulations show that the one-point probability distribution of orientations has multiple cusplike singularities. We determine the exact positions and qualitative behavior of these singularities. In addition to these geometrical singularities, we also find that the system shows order-disorder transitions, with a disordered phase at large lattice spacings, a phase with spontaneously broken orientational lattice symmetry at small lattice spacings, and an intervening Berezinskii-Kosterlitz-Thouless phase in between.

2.
Phys Rev E ; 105(3-1): 034127, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35428079

RESUMO

For steady-state autonomous absorption refrigerators operating in the linear response regime, we show that there exists a hierarchy between the relative fluctuation of currents for cold, hot, and work terminals. Our proof requires the Onsager reciprocity relation along with the refrigeration condition that sets the direction of the mean currents for each terminal. As a consequence, the universal bounds on the mean cooling power, obtained following the thermodynamic uncertainty relations, follow a hierarchy. Interestingly, within this hierarchy, the tightest bound is given in terms of the work current fluctuation. Furthermore, the relative uncertainty hierarchy introduces a bound on cooling efficiency that is tighter than the bound obtained from the thermodynamic uncertainty relations. Interestingly, all of these bounds saturate in the tight-coupling limit. We test the validity of our results for two paradigmatic absorption refrigerator models: (i) a four-level working fluid and (ii) a two-level working fluid, operating in the weak (additive) and strong (multiplicative) system-bath interaction regimes, respectively.

3.
Phys Rev E ; 105(2-1): 024129, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35291179

RESUMO

For a generic class of machines with broken time-reversal symmetry we show that in the linear response regime the relative fluctuation of the sum of output currents for time-forward and time-reversed processes is always lower bounded by the corresponding relative fluctuation of the sum of input currents. This bound is received when the same operating condition, for example, engine, refrigerator, or pump, is imposed on both the forward and the reversed processes. As a consequence, universal upper and lower bounds for the ratio between fluctuations of output and input current are obtained. Furthermore, we establish an important connection between our results and the recently obtained generalized thermodynamic uncertainty relations for time-reversal symmetry-broken systems. We illustrate these findings for two different types of machines: (1) a steady-state three-terminal quantum thermoelectric setup in presence of an external magnetic field and (2) a periodically driven classical Brownian heat engine.

4.
Phys Rev Lett ; 127(19): 190603, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34797144

RESUMO

We study bounds on ratios of fluctuations in steady-state time-reversal energy conversion devices. In the linear response regime, we prove that the relative fluctuations (precision) of the output current (power) is always lower bounded by the relative fluctuations of the input current (heat current absorbed from the hot bath). As a consequence, the ratio between the fluctuations of the output and input currents are bounded both from above and below, where the lower (upper) bound is determined by the square of the averaged efficiency (square of the Carnot efficiency) of the engine. The saturation of the lower bound is achieved in the tight-coupling limit when the determinant of the Onsager response matrix vanishes. Our analysis can be applied to different operational regimes, including engines, refrigerators, and heat pumps. We illustrate our findings in two types of continuous engines: two-terminal coherent thermoelectric junctions and three-terminal quantum absorption refrigerators. Numerical simulations in the far-from-equilibrium regime suggest that these bounds apply more broadly, beyond linear response.

5.
Phys Rev E ; 103(6): L060103, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34271746

RESUMO

For quantum Otto engine driven quasistatically, we provide exact full statistics of heat and work for a class of working fluids that follow a scale-invariant energy eigenspectra under driving. Equipped with the full statistics we go on to derive a universal expression for the ratio of nth cumulant of output work and input heat in terms of the mean Otto efficiency. Furthermore, for nonadiabatic driving of quantum Otto engine with working fluid consisting of either a (i) qubit or (ii) a harmonic oscillator, we show that the relative fluctuation of output work is always greater than the corresponding relative fluctuation of input heat absorbed from the hot bath. As a result, the ratio between the work fluctuation and the input heat fluctuation receives a lower bound in terms of the square value of the average efficiency of the engine. The saturation of the lower bound is received in the quasistatic limit of the engine.

6.
Phys Rev E ; 103(2-1): 022141, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33736118

RESUMO

We investigate a transient version of the recently discovered thermodynamic uncertainty relation (TUR) which provides a precision-cost trade-off relation for certain out-of-equilibrium thermodynamic observables in terms of net entropy production. We explore this relation in the context of energy transport in a bipartite setting for three exactly solvable toy model systems (two coupled harmonic oscillators, two coupled qubits, and a hybrid coupled oscillator-qubit system) and analyze the role played by the underlying statistics of the transport carriers in the TUR. Interestingly, for all these models, depending on the statistics, the TUR ratio can be expressed as a sum or a difference of a universal term which is always greater than or equal to 2 and a corresponding entropy production term. We find that the generalized version of the TUR, originating from the universal fluctuation symmetry, is always satisfied. However, interestingly, the specialized TUR, a tighter bound, is always satisfied for the coupled harmonic oscillator system obeying Bose-Einstein statistics. Whereas, for both the coupled qubit, obeying Fermi-like statistics, and the hybrid qubit-oscillator system with mixed Fermi-Bose statistics, violation of the tighter bound is observed in certain parameter regimes. We have provided conditions for such violations. We also provide a rigorous proof following the nonequilibrium Green's function approach that the tighter bound is always satisfied in the weak-coupling regime for generic bipartite systems.

7.
Phys Rev E ; 100(4-1): 042101, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31770984

RESUMO

We use the fundamental nonequilibrium steady-state fluctuation symmetry and derive a condition on the validity of the thermodynamic uncertainty relation (TUR) in thermal transport problems, classical and quantum alike. We test this condition and study the breakdown of the TUR in different thermal transport junctions of bosonic and electronic degrees of freedom. We prove that the TUR is valid in harmonic oscillator junctions. In contrast, in the nonequilibrium spin-boson model, which realizes many-body effects, it is satisfied in the Markovian limit, but violations arise as we tune (reduce) the cutoff frequency of the thermal baths, thus observing non-Markovian dynamics. We consider heat transport by noninteracting electrons in a tight-binding chain model. We show that the TUR is feasibly violated by tuning, e.g., the hybridization energy of the chain to the metal leads. These results manifest that the validity of the TUR relies on the statistics of the participating carriers, their interaction, and the nature of their couplings to the macroscopic contacts (metal electrodes and phonon baths).

8.
Phys Rev Lett ; 121(24): 240601, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30608719

RESUMO

There is a misconception, widely shared among physicists, that the equilibrium free energy of a one-dimensional classical model with strictly finite-ranged interactions, and at nonzero temperatures, cannot show any singularities as a function of the coupling constants. In this Letter, we discuss an instructive counterexample. We consider thin rigid linear rods of equal length 2ℓ whose centers lie on a one-dimensional lattice, of lattice spacing a. The interaction between rods is a soft-core interaction, having a finite energy U per overlap of rods. We show that the equilibrium free energy per rod F[(ℓ/a),ß], at inverse temperature ß, has an infinite number of singularities, as a function of ℓ/a.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...