Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 659: 1496-1504, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31096359

RESUMO

Poor storage of industrial wastes has been a cause of land contamination issues. These wastes or by-products have the potential to be used as secondary raw materials in construction, promoting the concept of a circular economy that will avoid land contamination. Here we evaluate radiological environmental impacts when wastes that contain elevated levels of naturally occurring radionuclides (NORs) such as red mud, fly ash and ground granulated blast furnace slag are made into 'green cements' such as geopolymers or alkali-activated materials (AAMs). During the study, three AAM concrete and mortar series with various mixing ratios were prepared and investigated. The NOR content, I-Index, radon emanation and exhalation of the precursor waste materials and their cement products were measured and calculated and the strength of the cement products was compared. The emanation and the exhalation properties were calculated for the final products, weighing the data of the components as a function of their mixing ratio. The I-index alone suggested that the AAMs would be suitable products. AAMs containing ground granulated blast furnace slag exhibited the lowest radon exhalation and higher compressive strength, while the fly ash and red mud AAMs had increased final radon exhalation. In the case of fly ash, alkaline activation of fly ash dramatically increased the radon exhalation; the highest measured fly ash exhalation was 1.49 times of the theoretically calculated exhalation value. This highlights the increased risk of using fly ash as a component in AAMs and the need to carry out testing on the final products as well as individual secondary raw materials.

2.
Sci Total Environ ; 658: 141-151, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30577013

RESUMO

This study characterises the naturally occurring radionuclide (NOR) contents of a suite of secondary raw materials or industrial residues that are normally disposed of in landfills or lagoons but now are increasingly used in green concretes. This includes ashes from a variety of industrial processes and red mud from aluminium production, as well as air pollution control residue and cement kiln dust. The chemical composition of the samples was determined with X-ray fluorescence spectroscopy (XRF). The Ra-226, Th-232 and K-40 activity concentrations were obtained by gamma spectrometry, and the results were compared with recently published NOR databases. The correlation between the NOR contents and the main chemical composition was investigated. The radioactive equilibrium in the U-238 chain was studied based on the determination of progeny isotopes. The most commonly used calculation methods (activity concentration index and radium equivalent concentration) were applied to classify the samples. The radon exhalation rate of the samples was measured, and the radon emanation coefficient was calculated. Significant correlation was found between the NORs and certain chemical components. The massic exhalation demonstrated a broad range, and it was found that the emanation coefficients were significantly lower in the case of the residues generated as a result of high-temperature combustion processes. The results showed a weak correlation between the Ra-226 concentration and the radon exhalation. This emphasises that managing the Ra-226 content of recycled material by itself is not sufficient to control the radon exhalation of recycled materials used in building products. The investigated parameters and their correlation behaviour could be used to source apportion materials found during the process of landfill mining and recovery of material for recycling.

3.
J Environ Radioact ; 168: 15-20, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27452913

RESUMO

The reuse of by-products and residue streams is an important topic due to environmental and financial aspects. Manganese clay is a residue of manganese ore processing and is generated in huge amounts. This residue may contain some radionuclides with elevated concentrations. In this study, the radon emanation features and the massic exhalation rate of the heat-treated manganese clay were determined with regard to brick production. From the manganese mud depository, 20 samples were collected and after homogenization radon exhalation characteristics were determined as a function of firing temperatures from 100 to 750 °C. The major naturally occurring radionuclides 40K, 226Ra and 232Th concentrations were 607 ± 34, 52 ± 6 and 40 ± 5 Bq kg-1, respectively, comparable with normal clay samples. Similar to our previous studies a strong correlation was found between the internal structure and the radon emanation. The radon emanation coefficient decreased by ∼96% from 0.23 at 100 °C to 0.01 at 750 °C. The massic radon exhalation rate of samples fired at 750 °C reduced by 3% compared to samples fired at 100 °C. In light of the results, reusing of manganese clay as a brick additive is possible without any constraints.


Assuntos
Poluentes Radioativos do Ar/análise , Silicatos de Alumínio/química , Materiais de Construção/análise , Monitoramento de Radiação , Radônio/análise , Argila , Manganês/química , Temperatura
4.
J Environ Radioact ; 162-163: 1-7, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27191740

RESUMO

The reuse of industrial by-products such as red mud is of great importance. In the case of the building material industry the reuse of red mud requires a cautious attitude, since the enhanced radionuclide content of red mud can have an effect on human health. The natural radionuclide content of red mud from the Ajka red mud reservoir and the clay sample from a Hungarian brick factory were determined by gamma spectrometry. It was found that maximum 27.8% red mud content can be added to fulfil the conditions of the EU-BSS. The effect of heat treatment was investigated on a red mud-clay mixture and it was found that in the case of radon and thoron exhalation the applied heat reduced remarkably the exhalation capacities. The leaching features of red mud and different mixtures were studied according to the MSZ-21470-50 Hungarian standard, the British CEN/TS 14429 standard and the Tessier sequential extraction method. The Tessier method and the MSZ-21470-50 standard are suitable for the characterization of materials; however, they do not provide enough information for waste deposition purposes. To this end, we propose using the CEN/TS 14429 method, because it is easy to use, and gives detailed information about the material's behaviour under different pH conditions, however, further measurements are necessary.


Assuntos
Silicatos de Alumínio/química , Materiais de Construção , Resíduos Industriais/análise , Monitoramento de Radiação , Argila , Radioisótopos/análise
5.
J Environ Radioact ; 148: 27-32, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26093854

RESUMO

The reuse of industrial by-products is important for members of numerous industrial sectors. However, though the benefits of reuse are evident from an economical point of view, some compounds in these materials can have a negative effect on users' health. In this study, the radon emanation and exhalation features of red mud were surveyed using heat-treatment (100-1200 °C). As a result of the 1200°C-treated samples, massic radon exhalation capacity reduced from 75 ± 10 mBq kg(-1) h(-1) to 7 ± 4 mBq kg(-1) h(-1), approximately 10% of the initial exhalation rate. To find an explanation for internal structural changes, the porosity features of the heat-treated samples were also investigated. It was found that the cumulative pore volume reduced significantly in less than 100 nm, which can explain the reduced massic exhalation capacity in the high temperature treated range mentioned above. SEM snapshots were taken of the surfaces of the samples as visual evidence for superficial morphological changes. It was found that the surface of the high temperature treated samples had changed, proving the decrement of open pores on the surface.


Assuntos
Poluentes Radioativos do Ar/análise , Materiais de Construção/análise , Monitoramento de Radiação , Radônio/análise , Temperatura Alta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA