Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(5): 057101, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38364131

RESUMO

The steady propagation of a (d-1)-dimensional planer interface in d-dimensional space is studied by analyzing mesoscopic nonconserved order parameter dynamics with two local minima under the influence of thermal noise. In this analysis, an entropic force generating interface propagation is formulated using a perturbation method. It is found that the entropic force singularly depends on an ultraviolet cutoff when d≥2. The theoretical calculation is confirmed by numerical simulations with d=2. The result means that an experimental measurement of the entropic force provides an estimation of the microscopic cutoff of the mesoscopic description.

2.
Phys Rev Lett ; 131(16): 167101, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37925711

RESUMO

We derive a variational expression for the correlation time of physical observables in steady-state diffusive systems. As a consequence of this variational expression, we obtain lower bounds on the correlation time, which provide speed limits on the self-averaging of observables. In equilibrium, the bound takes the form of a trade-off relation between the long- and short-time fluctuations of an observable. Out of equilibrium, the trade-off can be violated, leading to an acceleration of self-averaging. We relate this violation to the steady-state entropy production rate, as well as the geometric structure of the irreversible currents, giving rise to two complementary speed limits. One of these can be formulated as a lower estimate on the entropy production from the measurement of time-symmetric observables. Using an illustrating example, we show the intricate behavior of the correlation time out of equilibrium for different classes of observables and how this can be used to partially infer dissipation even if no time-reversal symmetry breaking can be observed in the trajectories of the observable.

3.
Phys Rev Lett ; 130(24): 247102, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37390420

RESUMO

The local equilibrium thermodynamics is a basic assumption of macroscopic descriptions of the out of equilibrium dynamics for Hamiltonian systems. We numerically analyze the Hamiltonian Potts model in two dimensions to study the violation of the assumption for phase coexistence in heat conduction. We observe that the temperature of the interface between ordered and disordered states deviates from the equilibrium transition temperature, indicating that metastable states at equilibrium are stabilized by the influence of a heat flux. We also find that the deviation is described by the formula proposed in an extended framework of the thermodynamics.


Assuntos
Temperatura Alta , Temperatura , Termodinâmica
4.
Sci Adv ; 9(18): eabq5561, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37134174

RESUMO

Continued advances in quantum technologies rely on producing nanometer-scale wires. Although several state-of-the-art nanolithographic technologies and bottom-up synthesis processes have been used to engineer these wires, critical challenges remain in growing uniform atomic-scale crystalline wires and constructing their network structures. Here, we discover a simple method to fabricate atomic-scale wires with various arrangements, including stripes, X-junctions, Y-junctions, and nanorings. Single-crystalline atomic-scale wires of a Mott insulator, whose bandgap is comparable to those of wide-gap semiconductors, are spontaneously grown on graphite substrates by pulsed-laser deposition. These wires are one unit cell thick and have an exact width of two and four unit cells (1.4 and 2.8 nm) and lengths up to a few micrometers. We show that the nonequilibrium reaction-diffusion processes may play an essential role in atomic pattern formation. Our findings offer a previously unknown perspective on the nonequilibrium self-organization phenomena on an atomic scale, paving a unique way for the quantum architecture of nano-network.

5.
Phys Rev Lett ; 130(19): 197101, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37243631

RESUMO

When a spatially localized stress is applied to a growing one-dimensional interface, the interface deforms. This deformation is described by the effective surface tension representing the stiffness of the interface. We present that the stiffness exhibits divergent behavior in the large system size limit for a growing interface with thermal noise, which has never been observed for equilibrium interfaces. Furthermore, by connecting the effective surface tension with a space-time correlation function, we elucidate the mechanism that anomalous dynamical fluctuations lead to divergent stiffness.

6.
Phys Rev E ; 106(2-1): 024125, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36109899

RESUMO

For a generic overdamped Langevin dynamics driven out of equilibrium by both time-dependent and nonconservative forces, the entropy production rate can be decomposed into two positive terms, termed excess and housekeeping entropy. However, this decomposition is not unique: There are two distinct decompositions, one due to Hatano and Sasa, the other one due to Maes and Netocný. Here we establish the connection between these two decompositions and provide a simple, geometric interpretation. We show that this leads to a decomposition of the entropy production rate into three positive terms, which we call the excess, housekeeping, and coupling part, respectively. The coupling part characterizes the interplay between the time-dependent and nonconservative forces. We also derive thermodynamic uncertainty relations for the excess and housekeeping entropy in both the Hatano-Sasa and Maes-Netocný decomposition and show that all quantities obey integral fluctuation theorems. We illustrate the decomposition into three terms using a solvable example of a dragged particle in a nonconservative force field.

7.
Phys Rev Lett ; 128(24): 247801, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35776448

RESUMO

We present a simple model describing the assembly and disassembly of heteropolymers consisting of two types of monomers A and B. We prove that no matter how we manipulate the concentrations of A and B, it takes longer than the exponential function of d to synthesize a fixed amount of the desired heteropolymer, where d is the number of A-B connections. We also prove the decomposition time is linear for chain length n. When d is proportional to n, synthesis and destruction have an exponential asymmetry. Our findings may facilitate research on the more general asymmetry of operational hardness.


Assuntos
Polímeros , Dureza
8.
Phys Rev E ; 103(6-1): 062129, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34271670

RESUMO

We propose a stochastic order parameter model for describing phase coexistence in steady heat conduction near equilibrium. By analyzing the stochastic dynamics with a nonequilibrium adiabatic boundary condition, where total energy is conserved over time, we derive a variational principle that determines thermodynamic properties in nonequilibrium steady states. The resulting variational principle indicates that the temperature of the interface between the ordered region and the disordered region becomes greater (less) than the equilibrium transition temperature in the linear response regime when the thermal conductivity in the ordered region is less (greater) than that in the disordered region. This means that a superheated ordered (supercooled disordered) state appears near the interface, which was predicted by an extended framework of thermodynamics proposed in Nakagawa and Sasa [Liquid-Gas Transitions in Steady Heat Conduction, Phys. Rev. Lett. 119, 260602 (2017)PRLTAO0031-900710.1103/PhysRevLett.119.260602.].

9.
Phys Rev Lett ; 127(1): 010601, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34270316

RESUMO

The theory of fluctuating hydrodynamics has been an important tool for analyzing macroscopic behavior in nonlinear lattices. However, despite its practical success, its microscopic derivation is still incomplete. In this work, we provide the microscopic derivation of fluctuating hydrodynamics, using the coarse-graining and projection technique; the equivalence of ensembles turns out to be critical. The Green-Kubo (GK)-like formula for the bare transport coefficients are presented in a numerically computable form. Our numerical simulations show that the bare transport coefficients exist for a sufficiently large but finite coarse-graining length in the infinite lattice within the framework of the GK-like formula. This demonstrates that the bare transport coefficients uniquely exist for each physical system.

10.
Phys Rev E ; 103(5): L050103, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34134276

RESUMO

The kinetic uncertainty relation (KUR) is a trade-off relation between the precision of an observable and the mean dynamical activity in a fixed time interval for a time-homogeneous and continuous-time Markov chain. In this Letter, we derive the KUR on the first passage time for the time-integrated current from the information inequality at stopping times. The relation shows that the precision of the first passage time is bounded from above by the mean number of jumps up to that time. We apply our result to simple systems and demonstrate that the activity constraint gives a tighter bound than the thermodynamic uncertainty relation in the regime far from equilibrium.

11.
Phys Rev Lett ; 126(16): 160604, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33961463

RESUMO

We theoretically and numerically investigate a two-dimensional O(2) model where an order parameter is convected by shear flow. We show that a long-range phase order emerges in two dimensions as a result of anomalous suppression of phase fluctuations by the shear flow. Furthermore, we use the finite-size scaling theory to demonstrate that a phase transition to the long-range ordered state from the disordered state is second order. At a transition point far from equilibrium, the critical exponents turn out to be close to the mean-field value for equilibrium systems.

12.
Phys Rev E ; 103(2-1): 022125, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33735996

RESUMO

We study fluctuating dynamics of a freely movable piston that separates an infinite cylinder into two regions filled with ideal gas particles at the same pressure but different temperatures. To investigate statistical properties of the time-averaged velocity of the piston in the long-time limit, we perturbatively calculate the large deviation function of the time-averaged velocity. Then, we derive an infinite number of effective Langevin equations yielding the same large deviation function as in the original model. Finally, we provide two possibilities for uniquely determining the form of the effective model.

13.
Phys Rev E ; 101(3-1): 033109, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32289937

RESUMO

We perform equilibrium molecular dynamics simulations for nanoscale fluids confined between two parallel walls and investigate how the autocorrelation function of force acting on one wall is related to the slip length. We demonstrate that for atomically smooth surfaces, the autocorrelation function is accurately described by linearized fluctuating hydrodynamics (LFH). Excellent agreement between the simulation and the LFH solution is found over a wide range of scales, specifically, from the timescale of fluid relaxation even to that of molecular motion. Fitting the simulation data yields a reasonable estimation of the slip length. We show that LFH provides a starting point for examining the relationship between the slip length and the force fluctuations.

14.
Proc Natl Acad Sci U S A ; 117(12): 6430-6436, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152124

RESUMO

We present an approach to response around arbitrary out-of-equilibrium states in the form of a fluctuation-response inequality (FRI). We study the response of an observable to a perturbation of the underlying stochastic dynamics. We find that the magnitude of the response is bounded from above by the fluctuations of the observable in the unperturbed system and the Kullback-Leibler divergence between the probability densities describing the perturbed and the unperturbed system. This establishes a connection between linear response and concepts of information theory. We show that in many physical situations, the relative entropy may be expressed in terms of physical observables. As a direct consequence of this FRI, we show that for steady-state particle transport, the differential mobility is bounded by the diffusivity. For a "virtual" perturbation proportional to the local mean velocity, we recover the thermodynamic uncertainty relation (TUR) for steady-state transport processes. Finally, we use the FRI to derive a generalization of the uncertainty relation to arbitrary dynamics, which involves higher-order cumulants of the observable. We provide an explicit example, in which the TUR is violated but its generalization is satisfied with equality.

15.
Phys Rev E ; 99(2-1): 022109, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30934332

RESUMO

We investigate a thermally isolated quantum many-body system with an external control represented by a step protocol of a parameter. The propagator at each step of the parameter change is described by thermodynamic quantities under some assumptions. For the time evolution of such systems, we formulate a path integral over the trajectories in the thermodynamic state space. In particular, for quasistatic operations, we derive an effective action of the thermodynamic entropy and its canonically conjugate variable. Then, the symmetry for the uniform translation of the conjugate variable emerges in the path integral. This leads to the entropy as a Noether invariant in quantum mechanics.

16.
Phys Rev E ; 99(1-1): 013106, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30780218

RESUMO

We study boundary conditions applied to the macroscopic dynamics of Newtonian liquids from the view of microscopic particle systems. We assume the existence of microscopic boundary conditions that are uniquely determined from a microscopic description of the fluid and the wall. By using molecular dynamical simulations, we examine a possible form of the microscopic boundary conditions. In the macroscopic limit, we may introduce a scaled velocity field by ignoring the higher-order terms in the velocity field that is calculated from the microscopic boundary condition and standard fluid mechanics. We define macroscopic boundary conditions as the boundary conditions that are imposed on the scaled velocity field. The macroscopic boundary conditions contain a few phenomenological parameters for an amount of slip, which are related to a functional form of the given microscopic boundary condition. By considering two macroscopic limits of the nonequilibrium steady state, we propose two different frameworks for determining macroscopic boundary conditions.

17.
Phys Rev Lett ; 121(12): 128902, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30296127

Assuntos
Folhas de Planta , Sasa
18.
Phys Rev E ; 97(6-1): 062101, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30011501

RESUMO

We derive a bound on generalized currents for Langevin systems in terms of the total entropy production in the system and its environment. For overdamped dynamics, any generalized current is bounded by the total rate of entropy production. We show that this entropic bound on the magnitude of generalized currents imposes power-efficiency tradeoff relations for ratchets in contact with a heat bath: Maximum efficiency-Carnot efficiency for a Smoluchowski-Feynman ratchet and unity for a flashing or rocking ratchet-can only be reached at vanishing power output. For underdamped dynamics, while there may be reversible currents that are not bounded by the entropy production rate, we show that the output power and heat absorption rate are irreversible currents and thus obey the same bound. As a consequence, a power-efficiency tradeoff relation holds not only for underdamped ratchets but also for periodically driven heat engines. For weak driving, the bound results in additional constraints on the Onsager matrix beyond those imposed by the second law. Finally, we discuss the connection between heat and entropy in a nonthermal situation where the friction and noise intensity are state dependent.

19.
Phys Rev E ; 95(3-1): 032132, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28415306

RESUMO

We show that uncorrelated Gaussian noise can drive a system out of equilibrium and can serve as a resource from which work can be extracted. We consider an overdamped particle in a periodic potential with an internal degree of freedom and a state-dependent friction, coupled to an equilibrium bath. Applying additional Gaussian white noise drives the system into a nonequilibrium steady state and causes a finite current if the potential is spatially asymmetric. The model thus operates as a Brownian ratchet, whose current we calculate explicitly in three complementary limits. Since the particle current is driven solely by additive Gaussian white noise, this shows that the latter can potentially perform work against an external load. By comparing the extracted power to the energy injection due to the noise, we discuss the efficiency of such a ratchet.

20.
Phys Rev Lett ; 119(26): 260602, 2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29328708

RESUMO

We study liquid-gas transitions of heat conduction systems in contact with two heat baths under constant pressure in the linear response regime. On the basis of local equilibrium thermodynamics, we propose an equality with a global temperature, which determines the volume near the equilibrium liquid-gas transition. We find that the formation of the liquid-gas interface is accompanied by a discontinuous change in the volume when increasing the mean temperature of the baths. A supercooled gas near the interface is observed as a stable steady state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...