Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEBS Open Bio ; 12(10): 1875-1885, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36054591

RESUMO

Acetylxylan esterase from Caldanaerobacter subterraneus subsp. tengcongensis (TTE0866) has an N-terminal region (NTR; residues 23-135) between the signal sequence (residues 1-22) and the catalytic domain (residues 136-324), which is of unknown function. Our previous study revealed the crystal structure of the wild-type (WT) enzyme containing the NTR and the catalytic domain. Although the structure of the catalytic domain was successfully determined, that of the NTR was undetermined, as its electron density was unclear. In this study, we investigated the role of the NTR through functional and structural analyses of NTR truncation mutants. Based on sequence and secondary structure analyses, NTR was confirmed to be an intrinsically disordered region. The truncation of NTR significantly decreased the solubility of the proteins at low salt concentrations compared with that of the WT. The NTR-truncated mutant easily crystallized in a conventional buffer solution. The crystal exhibited crystallographic properties comparable with those of the WT crystals suitable for structural determination. These results suggest that NTR plays a role in maintaining the solubility and inhibiting the crystallization of the catalytic domain.


Assuntos
Acetilesterase , Firmicutes , Acetilesterase/química , Acetilesterase/genética , Acetilesterase/metabolismo , Firmicutes/metabolismo , Sinais Direcionadores de Proteínas
2.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 11): 399-406, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34726178

RESUMO

The acetylxylan esterases (AXEs) classified into carbohydrate esterase family 4 (CE4) are metalloenzymes that catalyze the deacetylation of acetylated carbohydrates. AXE from Caldanaerobacter subterraneus subsp. tengcongensis (TTE0866), which belongs to CE4, is composed of three parts: a signal sequence (residues 1-22), an N-terminal region (NTR; residues 23-135) and a catalytic domain (residues 136-324). TTE0866 catalyzes the deacetylation of highly substituted cellulose acetate and is expected to be useful for industrial applications in the reuse of resources. In this study, the crystal structure of TTE0866 (residues 23-324) was successfully determined. The crystal diffracted to 1.9 Šresolution and belonged to space group I212121. The catalytic domain (residues 136-321) exhibited a (ß/α)7-barrel topology. However, electron density was not observed for the NTR (residues 23-135). The crystal packing revealed the presence of an intermolecular space without observable electron density, indicating that the NTR occupies this space without a defined conformation or was truncated during the crystallization process. Although the active-site conformation of TTE0866 was found to be highly similar to those of other CE4 enzymes, the orientation of its Trp264 side chain near the active site was clearly distinct. The unique orientation of the Trp264 side chain formed a different-shaped cavity within TTE0866, which may contribute to its reactivity towards highly substituted cellulose acetate.


Assuntos
Acetilesterase , Firmicutes , Acetilesterase/química , Acetilesterase/metabolismo , Cristalografia por Raios X , Firmicutes/metabolismo , Especificidade por Substrato
3.
Anal Biochem ; 584: 113353, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31271734

RESUMO

Peroxidase is widely used for the detection of secondary reactions during measurements of various enzymatic reactions, such as that of oxidase activity, or as an enzyme for immunoassay. Conventional methods utilizing the enzyme require expensive equipment such as a spectrophotometer to measure the absorption of light by the reaction product. Here, we describe a simple and cost-effective method for measuring enzymatic reactions using a signal accumulation type of ion sensitive field effect transistor (SA-ISFET) sensor capable of detecting the proton changes due to the enzymatic reaction. Using this detection principle, we constructed a detection system combining ABTS, an electron mediator, and a horseradish peroxidase activity detection system. As a result, we could quantitatively measure hydrogen peroxide with excellent reproducibility and linearity. As an application of this tool, we describe an oxidase-peroxidase reaction system for the measurement of glucose, sarcosine, uric acid and lactic acid. In addition, we describe an immunoassay system using a peroxidase-labeled antibody for detection of Escherichia coli. We also describe a prototype for a flow-type ISFET device for continuous and routine measurements.


Assuntos
Técnicas Biossensoriais/instrumentação , Peroxidase do Rábano Silvestre/metabolismo , Transistores Eletrônicos , Escherichia coli/isolamento & purificação , Peróxido de Hidrogênio/metabolismo , Imunoensaio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA