Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inherit Metab Dis ; 45(3): 445-455, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35174513

RESUMO

A deficiency of 3-hydroxyisobutyric acid dehydrogenase (HIBADH) has been recently identified as a cause of primary 3-hydroxyisobutyric aciduria in two siblings; the only previously recognized primary cause had been a deficiency of methylmalonic semialdehyde dehydrogenase, the enzyme that is immediately downstream of HIBADH in the valine catabolic pathway and is encoded by the ALDH6A1 gene. Here we report on three additional patients from two unrelated families who present with marked and persistent elevations of urine L-3-hydroxyisobutyric acid (L-3HIBA) and a range of clinical findings. Molecular genetic analyses revealed novel, homozygous variants in the HIBADH gene that are private within each family. Evidence for pathogenicity of the identified variants is presented, including enzymatic deficiency of HIBADH in patient fibroblasts. This report describes new variants in HIBADH as an underlying cause of primary 3-hydroxyisobutyric aciduria and expands the clinical spectrum of this recently identified inborn error of valine metabolism. Additionally, we describe a quantitative method for the measurement of D- and L-3HIBA in plasma and urine and present the results of a valine restriction therapy in one of the patients.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Espectrometria de Massas em Tandem , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Cromatografia Líquida , Humanos , Hidroxibutiratos/urina , Oxirredutases , Valina
2.
J Inherit Metab Dis ; 39(2): 173-88, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26689402

RESUMO

Glycosaminoglycans (GAG) are long, unbranched heteropolymers with repeating disaccharide units that make up the carbohydrate moiety of proteoglycans. Six distinct classes of GAGs are recognized. Their synthesis follows one of three biosynthetic pathways, depending on the type of oligosaccharide linker they contain. Chondroitin sulfate, dermatan sulfate, heparan sulfate, and heparin sulfate contain a common tetrasaccharide linker that is O-linked to specific serine residues in core proteins. Keratan sulfate can contain three different linkers, either N-linked to asparagine or O-linked to serine/threonine residues in core proteins. Finally, hyaluronic acid does not contain a linker and is not covalently attached to a core protein. Most inborn errors of GAG biosynthesis are reported in small numbers of patients. To date, in 20 diseases, convincing evidence for pathogenicity has been presented for mutations in a total of 16 genes encoding glycosyltransferases, sulfotransferases, epimerases or transporters. GAG synthesis defects should be suspected in patients with a combination of characteristic clinical features in more than one connective tissue compartment: bone and cartilage (short long bones with or without scoliosis), ligaments (joint laxity/dislocations), and subepithelial (skin, sclerae). Some produce distinct clinical syndromes. The commonest laboratory tests used for this group of diseases are analysis of GAGs, enzyme assays, and molecular testing. In principle, GAG analysis has potential as a general first-line diagnostic test for GAG biosynthesis disorders.


Assuntos
Doença/genética , Diagnóstico Precoce , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Glicosaminoglicanos/biossíntese , Glicosaminoglicanos/genética , Animais , Ensaios Enzimáticos/métodos , Testes Genéticos/métodos , Humanos
3.
Can J Cardiol ; 31(11): 1360-76, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26518446

RESUMO

Mitochondrial cardiomyopathies are clinically and genetically heterogeneous. An integrative approach encompassing clinical, biochemical, and molecular investigations is required to reach a specific diagnosis. In this review we summarize the clinical and genetic aspects of mitochondrial disorders associated with cardiomyopathy, including disorders of oxidative phosphorylation. It also describes groups of disorders that, although not usually classified as mitochondrial disorders, stem from defects in mitochondrial function (eg, disorders of ß-oxidation and the carnitine cycle), are associated with secondary mitochondrial impairment (eg, organic acidurias), and are important diagnostically because they are treatable. Current biochemical and molecular techniques for the diagnosis of mitochondrial cardiomyopathies are described, and a diagnostic algorithm is proposed, to help clinicians in their approach to cardiomyopathies in the context of mitochondrial diseases.


Assuntos
Biomarcadores/metabolismo , Cardiomiopatias , Mitocôndrias Cardíacas/metabolismo , Doenças Mitocondriais , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Humanos , Doenças Mitocondriais/complicações , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo
4.
Hum Mol Genet ; 24(14): 4103-13, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25911677

RESUMO

Protein synthesis in mitochondria is initiated by formylmethionyl-tRNA(Met) (fMet-tRNA(Met)), which requires the activity of the enzyme MTFMT to formylate the methionyl group. We investigated the molecular consequences of mutations in MTFMT in patients with Leigh syndrome or cardiomyopathy. All patients studied were compound heterozygotes. Levels of MTFMT in patient fibroblasts were almost undetectable by immunoblot analysis, and BN-PAGE analysis showed a combined oxidative phosphorylation (OXPHOS) assembly defect involving complexes I, IV and V. The synthesis of only a subset of mitochondrial polypeptides (ND5, ND4, ND1, COXII) was decreased, whereas all others were translated at normal or even increased rates. Expression of the wild-type cDNA rescued the biochemical phenotype when MTFMT was expressed near control levels, but overexpression produced a dominant-negative phenotype, completely abrogating assembly of the OXPHOS complexes, suggesting that MTFMT activity must be tightly regulated. fMet-tRNA(Met) was almost undetectable in control cells and absent in patient cells by high-resolution northern blot analysis, but accumulated in cells overexpressing MTFMT. Newly synthesized COXI was under-represented in complex IV immunoprecipitates from patient fibroblasts, and two-dimensional BN-PAGE analysis of newly synthesized mitochondrial translation products showed an accumulation of free COXI. Quantitative mass spectrophotometry of an N-terminal COXI peptide showed that the ratio of formylated to unmodified N-termini in the assembled complex IV was ∼350:1 in controls and 4:1 in patient cells. These results show that mitochondrial protein synthesis can occur with inefficient formylation of methionyl-tRNA(Met), but that assembly of complex IV is impaired if the COXI N-terminus is not formylated.


Assuntos
Ciclo-Oxigenase 1/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metionina/química , Células Cultivadas , Cromatografia Líquida , Ciclo-Oxigenase 1/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Exoma , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Inativação Gênica , Heterozigoto , Humanos , Doença de Leigh/genética , Mitocôndrias/metabolismo , Mutação , Fosforilação Oxidativa , Biossíntese de Proteínas , RNA de Transferência de Metionina/genética , RNA de Transferência de Metionina/metabolismo , Análise de Sequência de DNA , Espectrometria de Massas em Tandem
5.
Hum Mol Genet ; 24(10): 2841-7, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25652405

RESUMO

Addition of the trinucleotide cytosine/cytosine/adenine (CCA) to the 3' end of transfer RNAs (tRNAs) is essential for translation and is catalyzed by the enzyme TRNT1 (tRNA nucleotidyl transferase), which functions in both the cytoplasm and mitochondria. Exome sequencing revealed TRNT1 mutations in two unrelated subjects with different clinical features. The first presented with acute lactic acidosis at 3 weeks of age and developed severe developmental delay, hypotonia, microcephaly, seizures, progressive cortical atrophy, neurosensorial deafness, sideroblastic anemia and renal Fanconi syndrome, dying at 21 months. The second presented at 3.5 years with gait ataxia, dysarthria, gross motor regression, hypotonia, ptosis and ophthalmoplegia and had abnormal signals in brainstem and dentate nucleus. In subject 1, muscle biopsy showed combined oxidative phosphorylation (OXPHOS) defects, but there was no OXPHOS deficiency in fibroblasts from either subject, despite a 10-fold-reduction in TRNT1 protein levels in fibroblasts of the first subject. Furthermore, in normal controls, TRNT1 protein levels are 10-fold lower in muscle than in fibroblasts. High resolution northern blots of subject fibroblast RNA suggested incomplete CCA addition to the non-canonical mitochondrial tRNA(Ser(AGY)), but no obvious qualitative differences in other mitochondrial or cytoplasmic tRNAs. Complete knockdown of TRNT1 in patient fibroblasts rendered mitochondrial tRNA(Ser(AGY)) undetectable, and markedly reduced mitochondrial translation, except polypeptides lacking Ser(AGY) codons. These data suggest that the clinical phenotypes associated with TRNT1 mutations are largely due to impaired mitochondrial translation, resulting from defective CCA addition to mitochondrial tRNA(Ser(AGY)), and that the severity of this biochemical phenotype determines the severity and tissue distribution of clinical features.


Assuntos
Mitocôndrias/genética , Doenças Mitocondriais/genética , Mutação , Biossíntese de Proteínas/genética , RNA Nucleotidiltransferases/genética , RNA de Transferência de Serina/metabolismo , Criança , Pré-Escolar , Exoma , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Mitocôndrias/metabolismo , RNA Nucleotidiltransferases/metabolismo , Análise de Sequência de DNA , Síndrome
6.
Eur J Hum Genet ; 23(10): 1301-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25604853

RESUMO

RMND1 is an integral inner membrane mitochondrial protein that assembles into a large 240 kDa complex to support translation of the 13 polypeptides encoded on mtDNA, all of which are essential subunits of the oxidative phosphorylation (OXPHOS) complexes. Variants in RMND1 produce global defects in mitochondrial translation and were first reported in patients with severe neurological phenotypes leading to mortality in the first months of life. Using whole-exome sequencing, we identified compound heterozygous RMND1 variants in a 4-year-old patient with congenital lactic acidosis, severe myopathy, hearing loss, renal failure, and dysautonomia. The levels of mitochondrial ribosome proteins were reduced in patient fibroblasts, causing a translation defect, which was rescued by expression of the wild-type cDNA. RMND1 was almost undetectable by immunoblot analysis in patient muscle and fibroblasts. BN-PAGE analysis showed a severe combined OXPHOS assembly defect that was more prominent in patient muscle than in fibroblasts. Immunofluorescence experiments showed that RMND1 localizes to discrete foci in the mitochondrial network, juxtaposed to RNA granules where the primary mitochondrial transcripts are processed. RMND1 foci were not detected in patient fibroblasts. We hypothesize that RMND1 acts to anchor or stabilize the mitochondrial ribosome near the sites where the mRNAs are matured, spatially coupling post-transcriptional handling mRNAs with their translation, and that loss of function variants in RMND1 are associated with a unique constellation of clinical phenotypes that vary with the severity of the mitochondrial translation defect.


Assuntos
Acidose Láctica/genética , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/genética , Surdez/genética , Predisposição Genética para Doença/genética , Insuficiência de Múltiplos Órgãos/genética , Insuficiência Renal/genética , Pré-Escolar , Variação Genética/genética , Humanos , Masculino
7.
Hum Mol Genet ; 24(2): 480-91, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25214534

RESUMO

French Canadian Leigh Syndrome (LSFC) is an early-onset, progressive neurodegenerative disorder with a distinct pattern of tissue involvement. Most cases are caused by a founder missense mutation in LRPPRC. LRPPRC forms a ribonucleoprotein complex with SLIRP, another RNA-binding protein, and this stabilizes polyadenylated mitochondrial mRNAs. LSFC fibroblasts have reduced levels of LRPPRC and a specific complex IV assembly defect; however, further depletion of mutant LRPPRC results in a complete failure to assemble a functional oxidative phosphorylation system, suggesting that LRPPRC levels determine the nature of the biochemical phenotype. We tested this hypothesis in cultured muscle cells and tissues from LSFC patients. LRPPRC levels were reduced in LSFC muscle cells, resulting in combined complex I and IV deficiencies. A similar combined deficiency was observed in skeletal muscle. Complex IV was only moderately reduced in LSFC heart, but was almost undetectable in liver. Both of these tissues showed elevated levels of complexes I and III. Despite the marked biochemical differences, the steady-state levels of LRPPRC and mitochondrial mRNAs were extremely low, LRPPRC was largely detergent-insoluble, and SLIRP was undetectable in all LSFC tissues. The level of the LRPPRC/SLIRP complex appeared much reduced in control tissues by the first dimension blue-native polyacrylamide gel electrophoresis (BN-PAGE) analysis compared with fibroblasts, and even by second dimension analysis it was virtually undetectable in control heart. These results point to tissue-specific pathways for the post-transcriptional handling of mitochondrial mRNAs and suggest that the biochemical defects in LSFC reflect the differential ability of tissues to adapt to the mutation.


Assuntos
Doença de Leigh/metabolismo , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Células Cultivadas , Humanos , Doença de Leigh/genética , Fígado/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Especificidade de Órgãos , Fosforilação Oxidativa , Ligação Proteica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
8.
Hum Mutat ; 35(11): 1285-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25130867

RESUMO

Mutations in the nuclear-encoded mitochondrial aminoacyl-tRNA synthetases are associated with a range of clinical phenotypes. Here, we report a novel disorder in three adult patients with a phenotype including cataracts, short-stature secondary to growth hormone deficiency, sensorineural hearing deficit, peripheral sensory neuropathy, and skeletal dysplasia. Using SNP genotyping and whole-exome sequencing, we identified a single likely causal variant, a missense mutation in a conserved residue of the nuclear gene IARS2, encoding mitochondrial isoleucyl-tRNA synthetase. The mutation is homozygous in the affected patients, heterozygous in carriers, and absent in control chromosomes. IARS2 protein level was reduced in skin cells cultured from one of the patients, consistent with a pathogenic effect of the mutation. Compound heterozygous mutations in IARS2 were independently identified in a previously unreported patient with a more severe mitochondrial phenotype diagnosed as Leigh syndrome. This is the first report of clinical findings associated with IARS2 mutations.


Assuntos
Catarata/genética , Nanismo Hipofisário/genética , Perda Auditiva Neurossensorial/genética , Isoleucina-tRNA Ligase/genética , Doença de Leigh/genética , Mutação , Doenças do Sistema Nervoso Periférico/genética , Adulto , Sequência de Aminoácidos , Encéfalo/patologia , Catarata/diagnóstico , Consanguinidade , Análise Mutacional de DNA , Nanismo Hipofisário/diagnóstico , Feminino , Genes Recessivos , Perda Auditiva Neurossensorial/diagnóstico , Humanos , Isoleucina-tRNA Ligase/química , Doença de Leigh/diagnóstico , Imageamento por Ressonância Magnética , Masculino , Dados de Sequência Molecular , Linhagem , Doenças do Sistema Nervoso Periférico/diagnóstico , Fenótipo , Alinhamento de Sequência , Síndrome
9.
Hum Mol Genet ; 23(19): 5159-70, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24838397

RESUMO

Complex I of the mitochondrial respiratory chain is a large multisubunit enzyme that assembles from nuclear and mtDNA-encoded components. Several complex I assembly factors have been identified, but their precise functions are not well understood. Here, we have investigated the function of one of these, NDUFAF7, a soluble matrix protein comprised of a DUF185 domain that harbors a methyltransferase motif. Knockdown of NDUFAF7 by siRNA in human fibroblasts produced a specific complex I assembly defect, as did morpholino-mediated knockdown of the zebrafish ortholog. Germline disruption of the murine ortholog was an early embryonic lethal. The complex I assembly defect was characterized by rapid, AFG3L2-dependent, turnover of newly synthesized ND1, the subunit that seeds the assembly pathway, and by decreased steady-state levels of several other structural subunits including NDUFS2, NDUFS1 and NDUFA9. Expression of an NDUFAF7 mutant (G124V), predicted to disrupt methyltransferase activity, impaired complex I assembly, suggesting an assembly factor or structural subunit as a substrate for methylation. To identify the NDUFAF7 substrate, we used an anti-ND1 antibody to immunoprecipitate complex I and its associated assembly factors, followed by mass spectrometry to detect posttranslational protein modifications. Analysis of an NDUFAF7 methyltransferase mutant showed a 10-fold reduction in an NDUFS2 peptide containing dimethylated Arg85, but a 5-fold reduction in three other NDUFS2 peptides. These results show that NDUFAF7 functions to methylate NDUFS2 after it assembles into a complex I, stabilizing an early intermediate in the assembly pathway, and that this function is essential for normal vertebrate development.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Desenvolvimento Embrionário/genética , NADH Desidrogenase/genética , Motivos de Aminoácidos , Animais , CDPdiacilglicerol-Serina O-Fosfatidiltransferase/genética , Linhagem Celular , Fibroblastos , Técnicas de Silenciamento de Genes , Genes Letais , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , NADH Desidrogenase/química , NADH Desidrogenase/metabolismo , Fenótipo , Domínios e Motivos de Interação entre Proteínas , Proteólise , Interferência de RNA , Especificidade por Substrato , Vertebrados , Peixe-Zebra
10.
Hum Mutat ; 34(10): 1366-70, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23878101

RESUMO

Isolated cytochrome c oxidase (COX) deficiency is a common cause of mitochondrial disease, yet its genetic basis remains unresolved in many patients. Here, we identified novel compound heterozygous mutations in SCO1 (p.M294V, p.Val93*) in one such patient with fatal encephalopathy. The patient lacked the severe hepatopathy (p.P174L) or hypertrophic cardiomyopathy (p.G132S) observed in previously reported SCO1 cases, so we investigated whether allele-specific defects in SCO1 function might underlie the genotype-phenotype relationships. Fibroblasts expressing p.M294V had a relatively modest decrease in COX activity compared with those expressing p.P174L, whereas both SCO1 lines had marked copper deficiencies. Overexpression of known pathogenic variants in SCO1 fibroblasts showed that p.G132S exacerbated the COX deficiency, whereas COX activity was partially or fully restored by p.P174L and p.M294V, respectively. These data suggest that the clinical phenotypes in SCO1 patients might reflect the residual capacity of the pathogenic alleles to perform one or both functions of SCO1.


Assuntos
Acidose Láctica/genética , Proteínas de Membrana/genética , Mutação , Atrofias Olivopontocerebelares/genética , Acidose Láctica/metabolismo , Alelos , Sequência de Aminoácidos , Análise Mutacional de DNA , Evolução Fatal , Ordem dos Genes , Humanos , Lactente , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Chaperonas Moleculares , Dados de Sequência Molecular , Atrofias Olivopontocerebelares/metabolismo , Alinhamento de Sequência
11.
Cell Metab ; 17(3): 386-98, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23473033

RESUMO

RNA-binding proteins are at the heart of posttranscriptional gene regulation, coordinating the processing, storage, and handling of cellular RNAs. We show here that GRSF1, previously implicated in the binding and selective translation of influenza mRNAs, is targeted to mitochondria where it forms granules that colocalize with foci of newly synthesized mtRNA next to mitochondrial nucleoids. GRSF1 preferentially binds RNAs transcribed from three contiguous genes on the light strand of mtDNA, the ND6 mRNA, and the long noncoding RNAs for cytb and ND5, each of which contains multiple consensus binding sequences. RNAi-mediated knockdown of GRSF1 leads to alterations in mitochondrial RNA stability, abnormal loading of mRNAs and lncRNAs on the mitochondrial ribosome, and impaired ribosome assembly. This results in a specific protein synthesis defect and a failure to assemble normal amounts of the oxidative phosphorylation complexes. These data implicate GRSF1 as a key regulator of posttranscriptional mitochondrial gene expression.


Assuntos
Regulação da Expressão Gênica/fisiologia , Mitocôndrias/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , RNA/metabolismo , Ribonucleoproteínas/metabolismo , Ribossomos/metabolismo , Northern Blotting , Citocromos b/metabolismo , Eletroforese em Gel de Gradiente Desnaturante , Complexo I de Transporte de Elétrons/metabolismo , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Imuno-Histoquímica , Imunoprecipitação , Hibridização in Situ Fluorescente , Proteínas Mitocondriais/metabolismo , NADH Desidrogenase/metabolismo , Oligonucleotídeos/genética , Interferência de RNA , RNA Mitocondrial , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real
12.
Mol Biol Cell ; 24(3): 184-93, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23171548

RESUMO

Mammalian mitochondria harbor a dedicated translation apparatus that is required for the synthesis of 13 mitochondrial DNA (mtDNA)-encoded polypeptides, all of which are essential components of the oxidative phosphorylation (OXPHOS) complexes. Little is known about the mechanism of assembly of the mitoribosomes that catalyze this process. Here we show that C7orf30, a member of the large family of DUF143 proteins, associates with the mitochondrial large ribosomal subunit (mt-LSU). Knockdown of C7orf30 by short hairpin RNA (shRNA) does not alter the sedimentation profile of the mt-LSU, but results in the depletion of several mt-LSU proteins and decreased monosome formation. This leads to a mitochondrial translation defect, involving the majority of mitochondrial polypeptides, and a severe OXPHOS assembly defect. Immunoprecipitation and mass spectrometry analyses identified mitochondrial ribosomal protein (MRP)L14 as the specific interacting protein partner of C7orf30 in the mt-LSU. Reciprocal experiments in which MRPL14 was depleted by small interfering RNA (siRNA) phenocopied the C7orf30 knockdown. Members of the DUF143 family have been suggested to be universally conserved ribosomal silencing factors, acting by sterically inhibiting the association of the small and large ribosomal subunits. Our results demonstrate that, although the interaction between C7orf30 and MRPL14 has been evolutionarily conserved, human C7orf30 is, on the contrary, essential for mitochondrial ribosome biogenesis and mitochondrial translation.


Assuntos
Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Biossíntese de Proteínas , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , Ligação Proteica , RNA Interferente Pequeno/genética , Proteínas Ribossômicas/genética
13.
Cell ; 151(7): 1528-41, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23260140

RESUMO

Mitochondrial respiratory-chain complexes assemble from subunits of dual genetic origin assisted by specialized assembly factors. Whereas core subunits are translated on mitochondrial ribosomes, others are imported after cytosolic translation. How imported subunits are ushered to assembly intermediates containing mitochondria-encoded subunits is unresolved. Here, we report a comprehensive dissection of early cytochrome c oxidase assembly intermediates containing proteins required for normal mitochondrial translation and reveal assembly factors promoting biogenesis of human respiratory-chain complexes. We find that TIM21, a subunit of the inner-membrane presequence translocase, is also present in the major assembly intermediates containing newly mitochondria-synthesized and imported respiratory-chain subunits, which we term MITRAC complexes. Human TIM21 is dispensable for protein import but required for integration of early-assembling, presequence-containing subunits into respiratory-chain intermediates. We establish an unexpected molecular link between the TIM23 transport machinery and assembly of respiratory-chain complexes that regulate mitochondrial protein synthesis in response to their assembly state.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Citosol/metabolismo , Humanos , Proteínas de Membrana/química , Proteínas de Membrana Transportadoras/química , Mitocôndrias/química , Mitocôndrias/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/química , Biossíntese de Proteínas
14.
Am J Hum Genet ; 91(4): 737-43, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-23022098

RESUMO

Mutations in the genes composing the mitochondrial translation apparatus are an important cause of a heterogeneous group of oxidative phosphorylation (OXPHOS) disorders. We studied the index case in a consanguineous family in which two children presented with severe encephalopathy, lactic acidosis, and intractable seizures leading to an early fatal outcome. Blue native polyacrylamide gel electrophoretic (BN-PAGE) analysis showed assembly defects in all of the OXPHOS complexes with mtDNA-encoded structural subunits, and these defects were associated with a severe deficiency in mitochondrial translation. Immunoblot analysis showed reductions in the steady-state levels of several structural subunits of the mitochondrial ribosome. Whole-exome sequencing identified a homozygous missense mutation (c.1250G>A) in an uncharacterized gene, RMND1 (required for meiotic nuclear division 1). RMND1 localizes to mitochondria and behaves as an integral membrane protein. Retroviral expression of the wild-type RMND1 cDNA rescued the biochemical phenotype in subject cells, and siRNA-mediated knockdown of the protein recapitulated the defect. BN-PAGE, gel filtration, and mass spectrometry analyses showed that RMND1 forms a high-molecular-weight and most likely homopolymeric complex (∼240 kDa) that does not assemble in subject fibroblasts but that is rescued by expression of RMND1 cDNA. The p.Arg417Gln substitution, predicted to be in a coiled-coil domain, which is juxtaposed to a transmembrane domain at the extreme C terminus of the protein, does not alter the steady-state level of RMND1 but might prevent protein-protein interactions in this complex. Our results demonstrate that the RMND1 complex is necessary for mitochondrial translation, possibly by coordinating the assembly or maintenance of the mitochondrial ribosome.


Assuntos
Proteínas de Ciclo Celular/genética , Deficiência Intelectual/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Mutação de Sentido Incorreto , Biossíntese de Proteínas , Espasmos Infantis/genética , Consanguinidade , DNA Mitocondrial/genética , Exoma , Feminino , Predisposição Genética para Doença , Homozigoto , Humanos , Recém-Nascido , Síndrome de Lennox-Gastaut , Proteínas de Membrana/genética , Fenótipo , Domínios e Motivos de Interação entre Proteínas/genética , Ribossomos/genética
15.
Hum Mutat ; 33(8): 1201-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22504945

RESUMO

Mutations in the mitochondrial aminoacyl-tRNA synthetases (ARSs) are associated with a strikingly broad range of clinical phenotypes, the molecular basis for which remains obscure. Here, we report a novel missense mutation (c.137G>A, p.Gly46Asp) in the catalytic domain of YARS2, which codes for the mitochondrial tyrosyl-tRNA synthetase, in a subject with myopathy, lactic acidosis, and sideroblastic anemia (MLASA). YARS2 was undetectable by immunoblot analysis in subject myoblasts, resulting in a generalized mitochondrial translation defect. Retroviral expression of a wild-type YARS2 complementary DNA completely rescued the translation defect. We previously demonstrated that the respiratory chain defect in this subject was only present in fully differentiated muscle, and we show here that this likely reflects an increased requirement for YARS2 as muscle cells differentiate. An additional, heterozygous mutation was detected in TRMU/MTU1, a gene encoding the mitochondrial 2-thiouridylase. Although subject myoblasts and myotubes contained half the normal levels of TRMU, thiolation of mitochondrial tRNAs was normal. YARS2 eluted as part of high-molecular-weight complexes of ∼250 kDa and 1 MDa by gel filtration. This study confirms mutations in YARS2 as a cause of MLASA and shows that, like some of the cytoplasmic ARSs, mitochondrial ARSs occur in high-molecular-weight complexes.


Assuntos
Acidose Láctica/genética , Anemia Sideroblástica/genética , Doenças Musculares/genética , Tirosina-tRNA Ligase/genética , Adulto , Células Cultivadas , Humanos , Proteínas Mitocondriais/genética , Doenças Musculares/metabolismo , Mutação , Mioblastos/metabolismo , tRNA Metiltransferases/genética
16.
PLoS Biol ; 10(3): e1001288, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22448145

RESUMO

An increasing number of genes required for mitochondrial biogenesis, dynamics, or function have been found to be mutated in metabolic disorders and neurological diseases such as Leigh Syndrome. In a forward genetic screen to identify genes required for neuronal function and survival in Drosophila photoreceptor neurons, we have identified mutations in the mitochondrial methionyl-tRNA synthetase, Aats-met, the homologue of human MARS2. The fly mutants exhibit age-dependent degeneration of photoreceptors, shortened lifespan, and reduced cell proliferation in epithelial tissues. We further observed that these mutants display defects in oxidative phosphorylation, increased Reactive Oxygen Species (ROS), and an upregulated mitochondrial Unfolded Protein Response. With the aid of this knowledge, we identified MARS2 to be mutated in Autosomal Recessive Spastic Ataxia with Leukoencephalopathy (ARSAL) patients. We uncovered complex rearrangements in the MARS2 gene in all ARSAL patients. Analysis of patient cells revealed decreased levels of MARS2 protein and a reduced rate of mitochondrial protein synthesis. Patient cells also exhibited reduced Complex I activity, increased ROS, and a slower cell proliferation rate, similar to Drosophila Aats-met mutants.


Assuntos
Ataxia/genética , Proteínas de Drosophila/genética , Drosophila/fisiologia , Metionina tRNA Ligase/genética , Mitocôndrias/enzimologia , Doenças Neurodegenerativas/genética , Adolescente , Adulto , Animais , Ataxia/metabolismo , Proliferação de Células , Criança , Pré-Escolar , Drosophila/enzimologia , Drosophila/genética , Proteínas de Drosophila/metabolismo , Transporte de Elétrons , Eletrorretinografia/métodos , Feminino , Regulação Enzimológica da Expressão Gênica , Células HEK293 , Humanos , Leucoencefalopatias/genética , Leucoencefalopatias/metabolismo , Longevidade , Masculino , Metionina tRNA Ligase/metabolismo , Pessoa de Meia-Idade , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculos/metabolismo , Músculos/fisiopatologia , Mutação , Doenças Neurodegenerativas/metabolismo , Fosforilação Oxidativa , Linhagem , Fenótipo , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Espécies Reativas de Oxigênio/metabolismo , Retina/metabolismo , Retina/patologia , Resposta a Proteínas não Dobradas , Adulto Jovem
17.
Methods Mol Biol ; 837: 207-17, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22215550

RESUMO

The mammalian mitochondrial genome contains 37 genes, 13 of which encode polypeptide subunits in the enzyme complexes of the oxidative phosphorylation system. The other genes encode the rRNAs and tRNAs necessary for their translation. The mitochondrial translation machinery is located in the mitochondrial matrix, and is exclusively dedicated to the synthesis of these 13 enzyme subunits. Mitochondrial disease in humans is often associated with defects in mitochondrial translation. This can manifest as a global decrease in the rate of mitochondrial protein synthesis, a decrease in the synthesis of specific polypeptides, the synthesis of abnormal polypeptides, or in altered stability of specific translation products. All of these changes in the normal pattern of mitochondrial translation can be assessed by a straightforward technique that takes advantage of the insensitivity of the mitochondrial translation machinery to antibiotics that completely inhibit cytoplasmic translation. Thus, specific radioactive labeling of the mitochondrial translation products can be achieved in cultured cells, and the results can be visualized on gradient gels. The analysis of mitochondrial translation in cells cultured from patient biopsies is useful in the study of disease-causing mutations in both the mitochondrial and the nuclear genomes.


Assuntos
Marcação por Isótopo/métodos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/metabolismo , Biossíntese de Proteínas , Cisteína/metabolismo , Eletroforese em Gel de Poliacrilamida , Genoma Mitocondrial/genética , Humanos , Metionina/metabolismo , Proteínas Mitocondriais/isolamento & purificação , Mioblastos/citologia , Mioblastos/metabolismo , Radioisótopos de Enxofre
18.
Am J Hum Genet ; 90(1): 142-51, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22243966

RESUMO

We investigated a family in which the index subject presented with severe congenital lactic acidosis and dysmorphic features associated with a cytochrome c oxidase (COX)-assembly defect and a specific decrease in the synthesis of COX I, the subunit that nucleates COX assembly. Using a combination of microcell-mediated chromosome transfer, homozygosity mapping, and transcript profiling, we mapped the gene defect to chromosome 12 and identified a homozygous missense mutation (c.88G>A) in C12orf62. C12orf62 was not detectable by immunoblot analysis in subject fibroblasts, and retroviral expression of the wild-type C12orf62 cDNA rescued the biochemical phenotype. Furthermore, siRNA-mediated knockdown of C12orf 62 recapitulated the biochemical defect in control cells and exacerbated it in subject cells. C12orf62 is apparently restricted to the vertebrate lineage. It codes for a very small (6 kDa), uncharacterized, single-transmembrane protein that localizes to mitochondria and elutes in a complex of ∼110 kDa by gel filtration. COX I, II, and IV coimmunoprecipated with an epitope-tagged version of C12orf62, and 2D blue-native-polyacrylamide-gel-electrophoresis analysis of newly synthesized mitochondrial COX subunits in subject fibroblasts showed that COX assembly was impaired and that the nascent enzyme complex was unstable. We conclude that C12orf62 is required for coordination of the early steps of COX assembly with the synthesis of COX I.


Assuntos
Acidose Láctica/genética , Ciclo-Oxigenase 1/biossíntese , Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Mutação de Sentido Incorreto , Evolução Fatal , Feminino , Fibroblastos/enzimologia , Homozigoto , Humanos , Recém-Nascido , Mitocôndrias/enzimologia , Mitocôndrias/genética
19.
Hum Mol Genet ; 20(23): 4634-43, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21890497

RESUMO

MTU1 (TRMU) is a mitochondrial enzyme responsible for the 2-thiolation of the wobble U in tRNA(Lys), tRNA(Glu) and tRNA(Gln), a post-transcriptional modification believed to be important for accurate and efficient synthesis of the 13 respiratory chain subunits encoded by mtDNA. Mutations in MTU1 are associated with acute infantile liver failure, and this has been ascribed to a transient lack of cysteine, the sulfur donor for the thiouridylation reaction, resulting in a mitochondrial translation defect during early development. A mutation in tRNA(Lys) that causes myoclonic epilepsy with ragged-red fibers (MERRF) is also reported to prevent modification of the wobble U. Here we show that mitochondrial translation is unaffected in fibroblasts from an MTU1 patient, in which MTU1 is undetectable by immunoblotting, despite the severe reduction in the 2-thiolation of mitochondrial tRNA(Lys), tRNA(Glu) and tRNA(Gln). The only respiratory chain abnormality that we could observe in these cells was an accumulation of a Complex II assembly intermediate, which, however, did not affect the level of the fully assembled enzyme. The identical phenotype was observed by siRNA-mediated knockdown of MTU1 in HEK 293 cells. Further, the mitochondrial translation deficiencies present in myoblasts from mitochondrial encephalomyopathy, lactic acidosis and stroke-like episode and MERRF patients, which are associated with defects in post-transcriptional modification of mitochondrial tRNAs, did not worsen following knockdown of MTU1 in these cells. This study demonstrates that MTU1 is not required for mitochondrial translation at normal steady-state levels of tRNAs, and that it may possess an as yet uncharacterized function in another sulfur-trafficking pathway.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Biossíntese de Proteínas , tRNA Metiltransferases/metabolismo , Eletroforese em Gel de Poliacrilamida , Fibroblastos/enzimologia , Fibroblastos/patologia , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Síndrome MELAS/enzimologia , Síndrome MELAS/patologia , Síndrome MERRF/enzimologia , Síndrome MERRF/patologia , Proteínas Mitocondriais/deficiência , Mutação/genética , Mioblastos/enzimologia , Mioblastos/patologia , Fosforilação Oxidativa , RNA de Transferência/metabolismo , Tiouridina/metabolismo , tRNA Metiltransferases/deficiência
20.
Am J Hum Genet ; 87(1): 115-22, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20598281

RESUMO

We investigated the genetic basis for a global and uniform decrease in mitochondrial translation in fibroblasts from patients in two unrelated pedigrees who developed Leigh syndrome, optic atrophy, and ophthalmoplegia. Analysis of the assembly of the oxidative phosphorylation complexes showed severe decreases of complexes I, IV, and V and a smaller decrease in complex III. The steady-state levels of mitochondrial mRNAs, tRNAs, and rRNAs were not reduced, nor were those of the mitochondrial translation elongation factors or the protein components of the mitochondrial ribosome. Using homozygosity mapping, we identified a 1 bp deletion in C12orf65 in one patient, and DNA sequence analysis showed a different 1 bp deletion in the second patient. Both mutations predict the same premature stop codon. C12orf65 belongs to a family of four mitochondrial class I peptide release factors, which also includes mtRF1a, mtRF1, and Ict1, all characterized by the presence of a GGQ motif at the active site. However, C12orf65 does not exhibit peptidyl-tRNA hydrolase activity in an in vitro assay with bacterial ribosomes. We suggest that it might play a role in recycling abortive peptidyl-tRNA species, released from the ribosome during the elongation phase of translation.


Assuntos
Doença de Leigh/genética , Mitocôndrias/metabolismo , Oftalmoplegia/genética , Atrofia Óptica/genética , Fatores de Terminação de Peptídeos/genética , Células Cultivadas , Criança , Pré-Escolar , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Doença de Leigh/metabolismo , Masculino , Mitocôndrias/genética , Proteínas Mitocondriais , Mutação , Oftalmoplegia/metabolismo , Atrofia Óptica/metabolismo , Fosforilação Oxidativa , Linhagem , Fatores de Alongamento de Peptídeos/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...