Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 84(1-2): 268-79, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24855978

RESUMO

The concentration of carcinogenic poly aromatic hydrocarbons (c-PAHs) present in water and sediment of Klang Strait as well as in the edible tissue of blood cockle (Anadara granosa) was investigated. The human health risk of c-PAHs was assessed in accordance with the standards of the United States Environmental Protection Agency (US EPA). The cancer risks of c-PAHs to human are expected to occur through the consumption of blood cockles or via gastrointestinal exposure to polluted sediments and water in Kalng Strait. The non-carcinogenic risks that are associated with multiple pathways based on ingestion rate and contact rates with water were higher than the US EPA safe level at almost all stations, but the non-carcinogenic risks for eating blood cockle was below the level of US EPA concern. A high correlation between concentrations of c-PAHs in different matrices showed that the bioaccumulation of c-PAHs by blood cockles could be regarded as a potential health hazard for the consumers.


Assuntos
Cardiidae/química , Sedimentos Geológicos/química , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental , Humanos , Malásia , Hidrocarbonetos Policíclicos Aromáticos/química , Fatores de Risco , Estados Unidos , Poluentes Químicos da Água/química
2.
Mar Environ Res ; 55(4): 313-33, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12517423

RESUMO

The impact of floating net cages culturing the seabass, Lates calcarifer, on planktonic processes and water chemistry in two heavily used mangrove estuaries in Malaysia was examined. Concentrations of dissolved inorganic and particulate nutrients were usually greater in cage vs. adjacent (approximately 100 m) non-cage waters, although most variability in water-column chemistry related to water depth and tides. There were few consistent differences in plankton abundance, production or respiration between cage and non-cage sites. Rates of primary production were low compared with rates of pelagic mineralization reflecting high suspended loads coupled with large inputs of organic matter from mangrove forests, fishing villages, fish cages, pig farms and other industries within the catchment. Our preliminary sampling did not reveal any large-scale eutrophication due to the cages. A crude estimate of the contribution of fish cage inputs to the estuaries shows that fish cages contribute only approximately 2% of C but greater percentages of N (32-36%) and P (83-99%) to these waters relative to phytoplankton and mangrove inputs. Isolating and detecting impacts of cage culture in such heavily used waterways--a situation typical of most mangrove estuaries in Southeast Asia--are constrained by a background of large, highly variable fluxes of organic material derived from extensive mangrove forests and other human activities.


Assuntos
Aquicultura , Bass , Monitoramento Ambiental , Poluentes da Água/análise , Água/química , Animais , Avicennia , Biomassa , Carbono/análise , Eutrofização , Malásia , Nitrogênio/análise , Fósforo/análise , Plâncton , Dinâmica Populacional
3.
Oecologia ; 61(3): 326-333, 1984 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28311057

RESUMO

The ratio of stable carbon isotopes (δ13C) in plants and animals from Malaysian mangrove swamps, coastal inlets, and offshore waters was determined. Vascular plants of the swamps were isotopically distinct ( x±s.d.=-27.1±1.2‰) from plankton (-21.0±0.3‰) and other algae (-18.7±2.2‰). Animals from the swamps (-20.9±4.1‰) and inlets (-19.8±2.5‰) had a wide range of isotope ratios (-28.6 to-15.4‰), indicating consumption of both mangrove and algal carbon. Several commercially important species of bivalves, shrimp, crabs, and fish obtained carbon from mangrove trees. Mangrove carbon was carried offshore as detritus and was isotopically distinguishable in suspended particulate matter and sediments. Animals collected from 2 to 18 km offshore, however, showed no isotopic evidence of mangrove carbon assimilation, with ratios (-16.5±1.1‰, range-19.1 to-13.1‰) virtually identical to those reported for similar animals from other plankton-based ecosystems. Within groups of animals, isotope ratios reflected intergencric and interspecific differences in feeding and trophic position. In particular, there was a trend to less negative ratios with increasing trophic level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...