Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
World Neurosurg ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38642835

RESUMO

BACKGROUND: Our study presents a single-center experience of resection of intradural spinal tumors either with or without using intraoperative computed tomography-based registration and microscope-based augmented reality (AR). Microscope-based AR was recently described for improved orientation in the operative field in spine surgery, using superimposed images of segmented structures of interest in a two-dimensional or three-dimensional mode. METHODS: All patients who underwent surgery for resection of intradural spinal tumors at our department were retrospectively included in the study. Clinical outcomes in terms of postoperative neurologic deficits and complications were evaluated, as well as neuroradiologic outcomes for tumor remnants and recurrence. RESULTS: 112 patients (57 female, 55 male; median age 55.8 ± 17.8 years) who underwent 120 surgeries for resection of intradural spinal tumors with the use of intraoperative neuromonitoring were included in the study, with a median follow-up of 39 ± 34.4 months. Nine patients died during the follow-up for reasons unrelated to surgery. The most common tumors were meningioma (n = 41), schwannoma (n = 37), myopapillary ependymomas (n = 12), ependymomas (n = 10), and others (20). Tumors were in the thoracic spine (n = 46), lumbar spine (n = 39), cervical spine (n = 32), lumbosacral spine (n = 1), thoracic and lumbar spine (n = 1), and 1 tumor in the cervical, thoracic, and lumbar spine. Four biopsies were performed, 10 partial resections, 13 subtotal resections, and 93 gross total resections. Laminectomy was the common approach. In 79 cases, patients experienced neurologic deficits before surgery, with ataxia and paraparesis as the most common ones. After surgery, 67 patients were unchanged, 49 improved and 4 worsened. Operative time, extent of resection, clinical outcome, and complication rate did not differ between the AR and non-AR groups. However, the use of AR improved orientation in the operative field by identification of important neurovascular structures. CONCLUSIONS: High rates of gross total resection with favorable neurologic outcomes in most patients as well as low recurrence rates with comparable complication rates were noted in our single-center experience. AR improved intraoperative orientation and increased surgeons' comfort by enabling early identification of important anatomic structures; however, clinical and radiologic outcomes did not differ, when AR was not used.

2.
World Neurosurg ; 182: 144-158.e1, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37951465

RESUMO

BACKGROUND: The growing interest in exoscopic (EX) technology has prompted a comprehensive evaluation of its clinical, functional, and financial outcomes in neurosurgery. This systematic review and meta-analysis aimed to explore the utilization of EX in spine surgery and assess their safety, efficacy, and impact on surgical outcomes. METHODS: A thorough literature review was conducted using PubMed, Scopus, and Embase databases in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The study focused on articles concerning the application of EXs in spinal surgical procedures. The inclusion criteria encompassed various study designs presenting clinical data and intraoperative experiences related to EX utilization in spine surgery. RESULTS: The meta-analysis included studies examining various aspects of EX utilization, such as intraoperative complications, video/image quality, surgical field visualization, ease of manipulation, ergonomic characteristics, educational utility, surgical duration, and team involvement. Findings indicated that EXs offered superior video quality and favorable ergonomic features. Comparable outcomes were observed in surgical duration, intraoperative blood loss, time to discharge, and postoperative pain levels between EX and conventional microscope approaches. CONCLUSIONS: This study provides valuable insights into the utilization of EXs in spine surgery, demonstrating their potential advantages and comparable outcomes with conventional microscopes.


Assuntos
Procedimentos Neurocirúrgicos , Humanos , Procedimentos Neurocirúrgicos/instrumentação , Procedimentos Neurocirúrgicos/métodos
3.
J Clin Med ; 12(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37568553

RESUMO

Open spina bifida (OSB) is a congenital, non-lethal malformation with multifactorial etiology. Fetal therapy can be offered under certain conditions to parents after accurate prenatal diagnostic and interdisciplinary counseling. Since the advent of prenatal OSB surgery, various modifications of the original surgical techniques have evolved, including laparotomy-assisted fetoscopic repair. After a two-year preparation time, the team at the University of Giessen and Marburg (UKGM) became the first center to provide a three-port, three-layer fetoscopic repair of OSB via a laparotomy-assisted approach in the German-speaking area. We point out that under the guidance of experienced centers and by intensive multidisciplinary preparation and training, a previously described and applied technique could be transferred to a different setting.

4.
Sensors (Basel) ; 22(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36559961

RESUMO

This study aims to report on the capability of microscope-based augmented reality (AR) to evaluate registration and navigation accuracy with extracranial and intracranial landmarks and to elaborate on its opportunities and obstacles in compensation for navigation inaccuracies. In a consecutive single surgeon series of 293 patients, automatic intraoperative computed tomography-based registration was performed delivering a high initial registration accuracy with a mean target registration error of 0.84 ± 0.36 mm. Navigation accuracy is evaluated by overlaying a maximum intensity projection or pre-segmented object outlines within the recent focal plane onto the in situ patient anatomy and compensated for by translational and/or rotational in-plane transformations. Using bony landmarks (85 cases), there was two cases where a mismatch was seen. Cortical vascular structures (242 cases) showed a mismatch in 43 cases and cortex representations (40 cases) revealed two inaccurate cases. In all cases, with detected misalignment, a successful spatial compensation was performed (mean correction: bone (6.27 ± 7.31 mm), vascular (3.00 ± 1.93 mm, 0.38° ± 1.06°), and cortex (5.31 ± 1.57 mm, 1.75° ± 2.47°)) increasing navigation accuracy. AR support allows for intermediate and straightforward monitoring of accuracy, enables compensation of spatial misalignments, and thereby provides additional safety by increasing overall accuracy.


Assuntos
Realidade Aumentada , Cirurgia Assistida por Computador , Humanos , Tomografia Computadorizada por Raios X , Imageamento Tridimensional
5.
J Clin Med ; 11(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36233457

RESUMO

The aim of this study was to report on the clinical experience with microscope-based augmented reality (AR) in transsphenoidal surgery compared to the classical microscope-based approach. AR support was established using the head-up displays of the operating microscope, with navigation based on fiducial-/surface- or automatic intraoperative computed tomography (iCT)-based registration. In a consecutive single surgeon series of 165 transsphenoidal procedures, 81 patients underwent surgery without AR support and 84 patients underwent surgery with AR support. AR was integrated straightforwardly within the workflow. ICT-based registration increased AR accuracy significantly (target registration error, TRE, 0.76 ± 0.33 mm) compared to the landmark-based approach (TRE 1.85 ± 1.02 mm). The application of low-dose iCT protocols led to a significant reduction in applied effective dosage being comparable to a single chest radiograph. No major vascular or neurological complications occurred. No difference in surgical time was seen, time to set-up patient registration prolonged intraoperative preparation time on average by twelve minutes (32.33 ± 13.35 vs. 44.13 ± 13.67 min), but seems justifiable by the fact that AR greatly and reliably facilitated surgical orientation and increased surgeon comfort and patient safety, not only in patients who had previous transsphenoidal surgery but also in cases with anatomical variants. Automatic intraoperative imaging-based registration is recommended.

6.
Cancers (Basel) ; 14(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35565431

RESUMO

BACKGROUND: The aim of surgery for skull base meningiomas is maximal resection with minimal damage to the involved cranial nerves and cerebral vessels; thus, implementation of technologies for improved orientation in the surgical field, such as neuronavigation and augmented reality (AR), is of interest. METHODS: Included in the study were 39 consecutive patients (13 male, 26 female, mean age 64.08 ± 13.5 years) who underwent surgery for skull base meningiomas using microscope-based AR and automatic patient registration using intraoperative computed tomography (iCT). RESULTS: Most common were olfactory meningiomas (6), cavernous sinus (6) and clinoidal (6) meningiomas, meningiomas of the medial (5) and lateral (5) sphenoid wing and meningiomas of the sphenoidal plane (5), followed by suprasellar (4), falcine (1) and middle fossa (1) meningiomas. There were 26 patients (66.6%) who underwent gross total resection (GTR) of the meningioma. Automatic registration applying iCT resulted in high accuracy (target registration error, 0.82 ± 0.37 mm). The effective radiation dose of the registration iCT scans was 0.58 ± 1.05 mSv. AR facilitated orientation in the resection of skull base meningiomas with encasement of cerebral vessels and compression of the optic chiasm, as well as in reoperations, increasing surgeon comfort. No injuries to critical neurovascular structures occurred. Out of 35 patients who lived to follow-up, 33 could ambulate at their last presentation. CONCLUSION: A microscope-based AR facilitates surgical orientation for resection of skull base meningiomas. Registration accuracy is very high using automatic registration with intraoperative imaging.

7.
Front Neurosci ; 16: 883584, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615280

RESUMO

Background: Neuronavigation is routinely used in glioblastoma surgery, but its accuracy decreases during the operative procedure due to brain shift, which can be addressed utilizing intraoperative imaging. Intraoperative ultrasound (iUS) is widely available, offers excellent live imaging, and can be fully integrated into modern navigational systems. Here, we analyze the imaging features of navigated i3D US and its impact on the extent of resection (EOR) in glioblastoma surgery. Methods: Datasets of 31 glioblastoma resection procedures were evaluated. Patient registration was established using intraoperative computed tomography (iCT). Pre-operative MRI (pre-MRI) and pre-resectional ultrasound (pre-US) datasets were compared regarding segmented tumor volume, spatial overlap (Dice coefficient), the Euclidean distance of the geometric center of gravity (CoG), and the Hausdorff distance. Post-resectional ultrasound (post-US) and post-operative MRI (post-MRI) tumor volumes were analyzed and categorized into subtotal resection (STR) or gross total resection (GTR) cases. Results: The mean patient age was 59.3 ± 11.9 years. There was no significant difference in pre-resectional segmented tumor volumes (pre-MRI: 24.2 ± 22.3 cm3; pre-US: 24.0 ± 21.8 cm3). The Dice coefficient was 0.71 ± 0.21, the Euclidean distance of the CoG was 3.9 ± 3.0 mm, and the Hausdorff distance was 12.2 ± 6.9 mm. A total of 18 cases were categorized as GTR, 10 cases were concordantly classified as STR on MRI and ultrasound, and 3 cases had to be excluded from post-resectional analysis. In four cases, i3D US triggered further resection. Conclusion: Navigated i3D US is reliably adjunct in a multimodal navigational setup for glioblastoma resection. Tumor segmentations revealed similar results in i3D US and MRI, demonstrating the capability of i3D US to delineate tumor boundaries. Additionally, i3D US has a positive influence on the EOR, allows live imaging, and depicts brain shift.

8.
J Pers Med ; 12(3)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35330402

RESUMO

Glioblastoma, as the most aggressive brain tumor, is associated with a poor prognosis and outcome. To optimize prognosis and clinical therapy decisions, there is an urgent need to stratify patients with increased risk for recurrent tumors and low therapeutic success to optimize individual treatment. Radiogenomics establishes a link between radiological and pathological information. This review provides a state-of-the-art picture illustrating the latest developments in the use of radiogenomic markers regarding prognosis and their potential for monitoring recurrence. Databases PubMed, Google Scholar, and Cochrane Library were searched. Inclusion criteria were defined as diagnosis of glioblastoma with histopathological and radiological follow-up. Out of 321 reviewed articles, 43 articles met these inclusion criteria. Included studies were analyzed for the frequency of radiological and molecular tumor markers whereby radiogenomic associations were analyzed. Six main associations were described: radiogenomic prognosis, MGMT status, IDH, EGFR status, molecular subgroups, and tumor location. Prospective studies analyzing prognostic features of glioblastoma together with radiological features are lacking. By reviewing the progress in the development of radiogenomic markers, we provide insights into the potential efficacy of such an approach for clinical routine use eventually enabling early identification of glioblastoma recurrence and therefore supporting a further personalized monitoring and treatment strategy.

9.
J Clin Med ; 10(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34945020

RESUMO

BACKGROUND: Robot-guided spine surgery is based on a preoperatively planned trajectory that is reproduced in the operating room by the robotic device. This study presents our initial experience with thoracolumbar pedicle screw placement using Brainlab's Cirq® surgeon-controlled robotic arm (BrainLab, Munich, Germany). METHODS: All patients who underwent robotic-assisted implantation of pedicle screws in the thoracolumbar spine were included in the study. Our workflow, consisting of preoperative imagining, screw planning, intraoperative imaging with automatic registration, fusion of the preoperative and intraoperative imaging with a review of the preplanned screw trajectories, robotic-assisted insertion of K-wires, followed by a fluoroscopy-assisted insertion of pedicle screws and control iCT scan, is described. RESULTS: A total of 12 patients (5 male and 7 females, mean age 67.4 years) underwent 13 surgeries using the Cirq® Robotic Alignment Module for thoracolumbar pedicle screw implantation. Spondylodiscitis, metastases, osteoporotic fracture, and spinal canal stenosis were detected. A total of 70 screws were implanted. The mean time per screw was 08:27 ± 06:54 min. The mean time per screw for the first 7 surgeries (first 36 screws) was 16:03 ± 09:32 min and for the latter 6 surgeries (34 screws) the mean time per screw was 04:35 ± 02:11 min (p < 0.05). Mean entry point deviation was 1.9 ± 1.23 mm, mean deviation from the tip of the screw was 2.61 ± 1.6 mm and mean angular deviation was 3.5° ± 2°. For screw-placement accuracy we used the CT-based Gertzbein and Robbins System (GRS). Of the total screws, 65 screws were GRS A screws (92.85%), one screw was a GRS B screw, and two further screws were grade C. Two screws were D screws (2.85%) and underwent intraoperative revision. There were no perioperative deficits. CONCLUSION: Brainlab's Cirq® Robotic Alignment surgeon-controlled robotic arm is a safe and beneficial method for accurate thoracolumbar pedicle screw placement with high accuracy.

10.
Front Oncol ; 11: 656020, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490080

RESUMO

BACKGROUND: In glioma surgery, the patient's outcome is dramatically influenced by the extent of resection and residual tumor volume. To facilitate safe resection, neuronavigational systems are routinely used. However, due to brain shift, accuracy decreases with the course of the surgery. Intraoperative ultrasound has proved to provide excellent live imaging, which may be integrated into the navigational procedure. Here we describe the visualization of vascular landmarks and their shift during tumor resection using intraoperative navigated 3D color Doppler ultrasound (3D iUS color Doppler). METHODS: Six patients suffering from glial tumors located in the temporal lobe were included in this study. Intraoperative computed tomography was used for registration. Datasets of 3D iUS color Doppler were generated before dural opening and after tumor resection, and the vascular tree was segmented manually. In each dataset, one to four landmarks were identified, compared to the preoperative MRI, and the Euclidean distance was calculated. RESULTS: Pre-resectional mean Euclidean distance of the marked points was 4.1 ± 1.3 mm (mean ± SD), ranging from 2.6 to 6.0 mm. Post-resectional mean Euclidean distance was 4.7. ± 1.0 mm, ranging from 2.9 to 6.0 mm. CONCLUSION: 3D iUS color Doppler allows estimation of brain shift intraoperatively, thus increasing patient safety. Future implementation of the reconstructed vessel tree into the navigational setup might allow navigational updating with further consecutive increasement of accuracy.

11.
Brain Sci ; 11(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34439638

RESUMO

Surgical treatment of spondylodiscitis allows for rapid mobilization and shortens hospital stays, which makes surgical treatment the first-line therapy. We aim to describe our experiences with operative treatment on spondylodiscitis and to determine the parameters that are important in the prediction of outcomes. A retrospective review identified 237 patients who were operatively treated for spondylodiscitis in our institution between January 2010 and December 2018. Clinical data were collected through review of electronic records and relevant imaging. In all cases, contrast-enhancing MRI from the infected region of the spine was obtained. Leukocyte count and C-reactive protein concentrations (CRP) were determined in all the patients. We included 237 patients in the study, 87 female (36.7%) and 150 male (63.3%), with a mean age of 71.4 years. Mean follow-up was 31.6 months. Forty-five patients had spondylodiscitis of the cervical, 73 of the thoracic, and 119 of the lumbosacral spine. All the patients with spondylodiscitis of the cervical spine received instrumentation. In thoracic and lumbar spine decompression, surgery without instrumentation was performed in 26 patients as immediate surgery and in a further 28 patients in the early stages following admission, while 138 patients received instrumentation. Eighty-nine patients (37.6%) had concomitant infections. Infection healing occurred in 89% of patients. Favorable outcomes were noted in patients without concomitant infections, with a normalized CRP value and in patients who received antibiotic therapy for more than six weeks (p < 0.05). Unfavorable outcomes were noted in patients with high CRP, postoperative spondylodiscitis, and recurrent spondylodiscitis (p < 0.05). Application of antibiotic therapy for more than six weeks and normalized CRP showed a correlation with favorable outcomes, whereas concomitant infections showed a correlation with unfavorable outcomes. A detailed screening for concomitant infectious diseases is recommended.

12.
Brain Sci ; 11(5)2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063546

RESUMO

Background. Lateral approaches to the spine have gained increased popularity due to enabling minimally invasive access to the spine, less blood loss, decreased operative time, and less postoperative pain. The objective of the study was to analyze the use of intraoperative computed tomography with navigation and the implementation of augmented reality in facilitating a lateral approach to the spine. Methods. We prospectively analyzed all patients who underwent surgery with a lateral approach to the spine from September 2016 to January 2021 using intraoperative CT applying a 32-slice movable CT scanner, which was used for automatic navigation registration. Sixteen patients, with a median age of 64.3 years, were operated on using a lateral approach to the thoracic and lumbar spine and using intraoperative CT with navigation. Indications included a herniated disc (six patients), tumors (seven), instability following the fracture of the thoracic or lumbar vertebra (two), and spondylodiscitis (one). Results. Automatic registration, applying intraoperative CT, resulted in high accuracy (target registration error: 0.84 ± 0.10 mm). The effective radiation dose of the registration CT scans was 6.16 ± 3.91 mSv. In seven patients, a control iCT scan was performed for resection and implant control, with an ED of 4.51 ± 2.48 mSv. Augmented reality (AR) was used to support surgery in 11 cases, by visualizing the tumor outline, pedicle screws, herniated discs, and surrounding structures. Of the 16 patients, corpectomy was performed in six patients with the implantation of an expandable cage, and one patient underwent discectomy using the XLIF technique. One patient experienced perioperative complications. One patient died in the early postoperative course due to severe cardiorespiratory failure. Ten patients had improved and five had unchanged neurological status at the 3-month follow up. Conclusions. Intraoperative computed tomography with navigation facilitates the application of lateral approaches to the spine for a variety of indications, including fusion procedures, tumor resection, and herniated disc surgery.

13.
Brain Sci ; 11(3)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802710

RESUMO

Diffusion tensor imaging (DTI)-based fiber tractography is routinely used in clinical applications to visualize major white matter tracts, such as the corticospinal tract (CST), optic radiation (OR), and arcuate fascicle (AF). Nevertheless, DTI is limited due to its capability of resolving intra-voxel multi-fiber populations. Sophisticated models often require long acquisition times not applicable in clinical practice. Diffusion kurtosis imaging (DKI), as an extension of DTI, combines sophisticated modeling of the diffusion process with short acquisition times but has rarely been investigated in fiber tractography. In this study, DTI- and DKI-based fiber tractography of the CST, OR, and AF was investigated in healthy volunteers and glioma patients. For the CST, significantly larger tract volumes were seen in DKI-based fiber tractography. Similar results were obtained for the OR, except for the right OR in patients. In the case of the AF, results of both models were comparable with DTI-based fiber tractography showing even significantly larger tract volumes in patients. In the case of the CST and OR, DKI-based fiber tractography contributes to advanced visualization under clinical time constraints, whereas for the AF, other models should be considered.

14.
Bosn J Basic Med Sci ; 21(5): 587-597, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33596403

RESUMO

Extreme lateral interbody fusion (XLIF) has become the standard of minimally invasive lumbar segmental scoliosis treatment. Our objective is to determine the safety and efficacy of XLIF in spinal canal stenosis (SCS) and spondylodiscitis (SD). Patients treated with XLIF in our department between 2012 and 2018 were retrospectively analyzed. Patient records with clinical and radiographical parameters were evaluated. The patient cohort consists of 40 male and 32 female patients with a median age of 66.6 years. Forty-five patients had an SCS and 27 patients SD. The mean follow-up was 23 months. One level XLIF was performed in 49 patients, 2 levels in 15, 3 levels in 7 patients and 4 levels in 1 patient. All but one patient received an additional dorsal stabilization. The pain was present in all patients with a mean Visual Analogue Scale (VAS) score of 8.8 vs. postoperative VAS of 2.8 (p<0.05). Preoperative neurological deficits were found in 44 patients. Only 6 patients had a neurological deterioration, 45 patients improved, and 21 patients remained unchanged. One patient experienced a perioperative complication.  Non-fusion occurred in 8 cases. There were no outcome differences regarding pain and radiological outcome between patients with SCS and SD as well as between patients with one level vs. multilevel surgery. Baseline characteristics and the radiological outcome did not differ between the two groups. Patients with SD had a higher rate of worsening of neurological deficits following surgery, a higher rate of non-fusion, and a longer hospital stay. Patients with spinal canal stenosis SCS had a longer surgery time and more frequent adjacent segment disease.


Assuntos
Discite/cirurgia , Fusão Vertebral/efeitos adversos , Fusão Vertebral/métodos , Estenose Espinal/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Discite/diagnóstico por imagem , Feminino , Humanos , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/cirurgia , Vértebras Lombares/cirurgia , Masculino , Pessoa de Meia-Idade , Período Pós-Operatório , Período Pré-Operatório , Estudos Retrospectivos , Escoliose/cirurgia , Estenose Espinal/diagnóstico por imagem , Resultado do Tratamento , Escala Visual Analógica
15.
Stereotact Funct Neurosurg ; 99(1): 79-89, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32992321

RESUMO

OBJECTIVE: The aim of this work was to compare fiducial-based and intraoperative computed tomography (iCT)-based registration for frameless stereotactic brain biopsy. METHODS: Of 50 frameless stereotactic biopsies with the VarioGuide, 30 cases were registered as iCT based and 20 as fiducial based. Statistical analysis of the target registration error (TRE), dose length product, effective radiation dose (ED), operation time, and diagnostic yield was performed. RESULTS: The mean TRE was significantly lower using iCT-based registration (mean ± SD: 0.70 ± 0.32 vs. 2.43 ± 0.73 mm, p < 0.0001). The ED was significantly lower when using iCT-based registration compared to standard navigational CT (mean ± SD: 0.10 ± 0.13 vs. 2.23 ± 0.34 mSv, p < 0.0001). Post-biopsy iCT was associated with a significant lower (p < 0.0001) ED compared to standard CT (mean ± SD: 1.04 ± 0.18 vs. 1.65 ± 0.26 mSv). The mean surgical time was shorter using iCT-based registration, although the mean total operating room (OR) time did not differ significantly. The diagnostic yield was 96.7% (iCT group) versus 95% (fiducial group). Post-biopsy imaging revealed severe bleeding in 3.3% (iCT group) versus 5% (fiducial group). CONCLUSION: iCT-based registration for frameless stereotactic biopsies increases the accuracy significantly without negative effects on the surgical time or the overall time in the OR. Appropriate scan protocols in iCT registration contribute to a significant reduction of the radiation exposure. The high accuracy of the iCT makes it the more favorable registration strategy when taking biopsies of small tumors or lesions near eloquent brain areas.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Marcadores Fiduciais , Monitorização Neurofisiológica Intraoperatória/métodos , Neuronavegação/métodos , Tomografia Computadorizada por Raios X/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia/métodos , Encéfalo/patologia , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
16.
Medicina (Kaunas) ; 56(12)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255605

RESUMO

Background and objectives: Expandable cages are frequently used to reconstruct the anterior spinal column after a corpectomy. In this retrospective study, we evaluated the perioperative advantages and disadvantages of corpectomy reconstruction with an expandable cage. Materials and Methods: Eighty-six patients (45 male and 41 female patients, medium age of 61.3 years) were treated with an expandable titanium cage for a variety of indications from January 2012 to December 2019 and analyzed retrospectively. The mean follow-up was 30.7 months. Outcome was measured by clinical examination and visual analogue scale (VAS); myelopathy was classified according to the EMS (European Myelopathy Scale) and gait disturbances with the Nurick score. Radiographic analysis comprised measurement of fusion, subsidence and the C2-C7 angle. Results: Indications included spinal canal stenosis with myelopathy (46 or 53.5%), metastasis (24 or 27.9%), spondylodiscitis (12 or 14%), and fracture (4 or 4.6%). In 39 patients (45.3%), additional dorsal stabilization (360° fusion) was performed. In 13 patients, hardware failure occurred, and in 8 patients, adjacent segment disease occurred. Improvement of pain symptoms, myelopathy, and gait following surgery were statistically significant (p < 0.05), with a medium preoperative VAS of 8, a postoperative score of 3.2, and medium EMS scores of 11.3 preoperatively vs. 14.3 postoperatively. Radiographic analysis showed successful fusion in 74 patients (86%). As shown in previous studies, correction of the C2-C7 angle did not correlate with improvement of neurological symptoms. Conclusion: Our results show that expandable titanium cages are a safe and useful tool in anterior cervical corpectomies for providing adequate anterior column support and stability.


Assuntos
Fusão Vertebral , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição da Dor , Estudos Retrospectivos , Resultado do Tratamento
17.
Healthcare (Basel) ; 8(4)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202727

RESUMO

BACKGROUND: Patients' fear of the coronavirus disease 2019 (COVID-19) may delay inevitable treatment, putting potential benefits at risk. This single-center retrospective study aims to analyze temporal relationships of the first wave of the COVID-19 pandemic in Germany with the number of patients who sought and received elective neurosurgical treatment at a German university hospital. METHODS: Daily outpatient numbers (ON) and elective procedures (EP) were recorded at our department between 1 January 2020 and 30 June 2020 (baseline: between 1 January 2019 and 30 June 2019). In patients who received EP, we recorded indication, outcome, and length of stay (LOS). Moving averages of ON (MAON) and of EP were calculated. Data on governmental action taken in response to the pandemic and on coronavirus-positive cases in Germany (CPCG) were superimposed. Exponential and arc tangent curves (ATC) were fitted to the absolute numbers of CPCG. Phase shifts were estimated, and Spearman's rank correlation coefficient, rho, was calculated between the 2020 MAON and the derivative function of the fitted ATC (DFATC). Wilcoxon rank sum served as statistical test. Significance was assumed with p values of less than 0.05. RESULTS: ON were significantly decreased in April 2020 as compared to April 2019 (p = 0.010). A phase shift between the German lockdown, the DFATC, and the decrease in MAON was not detected, while a phase shift of 10 days between the DFATC and the subsequent increase in MAON was detected. The DFATC was significantly negatively correlated (rho = -0.92, p < 0.0001) to the MAON until 31 March 2020, and, when shifted by 10 days, the DFATC was significantly negatively correlated (rho = -0.87, p < 0.0001) to the MAON from 01 April 2020. EP (p = 0.023), including the subset of non-oncological EP (p = 0.032), were significantly less performed in the first half of 2020 as compared to the first half of 2019. In March and April 2020, we conducted significantly more EP due to motor deficits (p = 0.0267, and less), visual disturbances (p = 0.0488), and spinal instability (p = 0.0012), and significantly less EP due to radicular pain (p = 0.0489), as compared to March and April 2019. LOS ranked significantly higher in patients who received cranial or spinal EP in March and April 2020 as compared to March and April 2019 (p = 0.0497). Significant differences in outcome were not observed. CONCLUSION: The beginning of the COVID-19 pandemic was correlated to an immediate and significant decrease in ON, and to a significant decrease in the number of EP performed. The subsequent increase in ON was delayed. Adequate measures to promote timely discharge of patients may become increasingly relevant as the pandemic proceeds. Although we observed a shift in the range of indications towards significantly more EP in patients with neurological deficiencies, care should be taken to avoid potentially deleterious delays of necessary elective treatment in future pandemic situations.

18.
World Neurosurg ; 142: e307-e315, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32640326

RESUMO

OBJECTIVE: We prospectively investigated how to integrate indocyanine green (ICG) angiography in an augmented reality (AR) setting for aneurysm surgery. METHODS: In 20 patients with a total of 22 aneurysms, the head-up display of the operating microscope (Kinevo900) was used for AR. ICG-AR was established directly by the head-up display superimposing the ICG angiography as green live video overlay. In addition, the reconstructed outline of the three-dimensional (3D) vessel architecture was visualized by AR applying intraoperative low-dose computed tomography (vessel-AR). RESULTS: In all patients, ICG-AR and vessel-AR were successfully implemented. The flow in the vessels could be observed directly in the white light view of the microscope oculars without being distracted from the surgical site by looking on separate screens. This factor enabled also surgical manipulation during ICG angiography. In parallel, AR additionally visualized the 3D vessel architecture, enhancing the understanding of the 3D anatomy (target registration error, 0.71 ± 0.21 mm; intraoperative low-dose computed tomography effective dose, 42.7 µSv). Linear (n = 28; range, 1-8.5 mm) and rotational (n = 3; range, 2.9°-14.4°) navigation adjustments performed in 18 of 20 patients resulted in a close matching of the vessel-AR outline with the real vessel situation after preparation, compensating for shifting. CONCLUSIONS: ICG-AR could be successfully implemented. It facilitated surgical manipulation and flow interpretation during ICG angiography because it could be observed directly while looking through the microscope oculars in white light instead of being distracted from the surgical site while looking on separate screens. Additional AR visualizing the vessel architecture improved understanding of 3D anatomy for preparation and clipping.


Assuntos
Realidade Aumentada , Angiografia Cerebral/métodos , Corantes , Verde de Indocianina , Aneurisma Intracraniano/cirurgia , Adulto , Idoso , Angiografia por Tomografia Computadorizada , Feminino , Humanos , Imageamento Tridimensional , Angiografia por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Cirurgia Assistida por Computador/métodos
19.
Global Spine J ; 10(2 Suppl): 41S-55S, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32528805

RESUMO

STUDY DESIGN: A prospective, case-based, observational study. OBJECTIVES: To investigate how microscope-based augmented reality (AR) support can be utilized in various types of spine surgery. METHODS: In 42 spinal procedures (12 intra- and 8 extradural tumors, 7 other intradural lesions, 11 degenerative cases, 2 infections, and 2 deformities) AR was implemented using operating microscope head-up displays (HUDs). Intraoperative low-dose computed tomography was used for automatic registration. Nonlinear image registration was applied to integrate multimodality preoperative images. Target and risk structures displayed by AR were defined in preoperative images by automatic anatomical mapping and additional manual segmentation. RESULTS: AR could be successfully applied in all 42 cases. Low-dose protocols ensured a low radiation exposure for registration scanning (effective dose cervical 0.29 ± 0.17 mSv, thoracic 3.40 ± 2.38 mSv, lumbar 3.05 ± 0.89 mSv). A low registration error (0.87 ± 0.28 mm) resulted in a reliable AR representation with a close matching of visualized objects and reality, distinctly supporting anatomical orientation in the surgical field. Flexible AR visualization applying either the microscope HUD or video superimposition, including the ability to selectively activate objects of interest, as well as different display modes allowed a smooth integration in the surgical workflow, without disturbing the actual procedure. On average, 7.1 ± 4.6 objects were displayed visualizing target and risk structures reliably. CONCLUSIONS: Microscope-based AR can be applied successfully to various kinds of spinal procedures. AR improves anatomical orientation in the surgical field supporting the surgeon, as well as it offers a potential tool for education.

20.
J Neurosurg Sci ; 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32031356

RESUMO

BACKGROUND: Pathway activating models try to describe stimulation spread in deep brain stimulation (DBS). Volume of tissue activated (VTA) models are simplified model variants allowing faster and easier computation. Our study aimed to investigate, how VTA visualization can be integrated into a clinical workflow applying directional electrodes using a standard clinical DBS planning system. METHODS: Twelve patients underwent DBS, using directional electrodes for bilateral subthalamic nucleus (STN) stimulation in Parkinson's disease. Preoperative 3T magnetic resonance imaging was used for automatic visualization of the STN outline, as well as for fiber tractography. Intraoperative computed tomography was used for automatic lead detection. The Guide XT software, closely integrated into the DBS planning software environment, was used for VTA calculation and visualization. RESULTS: VTA visualization was possible in all cases. The percentage of VTA covering the STN volume ranged from 25% to 100% (mean ± standard deviation: 60% ± 25%) on the left side and from 0% to 98% (51% ± 30%) on the right side. The mean coordinate of all VTA centers was: 12.6 ± 1.2 mm lateral, 2.1 ± 1.2 mm posterior, and 2.3 ± 1.4 mm inferior in relation to the midcommissural point. Stimulation effects can be compared to the VTA visualization in relation to surrounding structures, potentially facilitating programming, which might be especially beneficial in case of suboptimal lead placement. CONCLUSIONS: VTA visualization in a clinical planning system allows an intuitive adjustment of the stimulation parameters, supports programming, and enhances understanding of effects and side effects of DBS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...