Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 17(9): 3214-3222, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32662647

RESUMO

Drug release from a lipid-based drug delivery system (LbDDS) is typically studied in vitro using a one-step intestinal digestion model. However, lately the importance of incorporating gastric digestion has been stressed. The aim of the present study was to compare a two-step gastro-intestinal (GI) in vitro digestion model to the commonly used one-step intestinal digestion model. The models were evaluated by studying release of the model drug A1260 from two LbDDSs (F-I and F-II), for which in vivo pharmacokinetic data from oral administration to beagle dogs were available. The amount of A1260 recovered in the aqueous phases during and after the GI digestion of F-I and F-II was related to the Cmax and AUC0-48h of the plasma concentration-time profiles of each formulation and produced a rank order in vitro-in vivo (IVIV) relation. In comparison, a similar IVIV rank ordering was obtained when relating the amount of A1260 recovered in the aqueous phase prior (t = 0 min), and following 15 min of intestinal digestion, to the plasma concentration-time profiles. However, after 60 min of intestinal digestion, the LbDDSs performed equally in the one-step in vitro digestion model, contrary to what was observed in the two-step digestion model, and in vivo. As the GI digestion model produced a clearer distinction in terms of LbDDS rank ordering of the two LbDDSs, compared to the intestinal digestion model, it was found to be a promising in vitro model to study and estimate the LbDDS behavior in vivo.


Assuntos
Digestão/fisiologia , Intestinos/fisiologia , Lipídeos/farmacocinética , Preparações Farmacêuticas/metabolismo , Estômago/fisiologia , Animais , Química Farmacêutica/métodos , Cães , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Modelos Biológicos , Solubilidade
2.
Pharmaceutics ; 12(6)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486088

RESUMO

The preferred delivery route for drugs targeted for systemic effect is by oral administration. Following oral administration, a solid dosage form must disintegrate and the drug dissolve, thereafter permeating the intestinal mucosa. Several different in vitro methods are used to investigate these processes, i.e., disintegration tests, dissolution tests, and permeability models. However, the actual behavior of oral dosage forms in the environment of the gastro-intestinal tract is not very well elucidated using these conventional methods. In this study, the use of capsule endoscopy to determine tablet disintegration in vivo was assessed. Panadol and Panadol Rapid (acetaminophen/paracetamol) were used as the test material. The in vivo tablet disintegration behavior in beagle dogs was assessed by the use of capsule endoscopy. The in vitro tablet disintegration behavior was assessed using the European Pharmacopeia (Ph. Eur.) disintegration test. The study showed that the in vivo disintegration times of Panadol and Panadol Rapid were 24.7 and 16.5 min, respectively, when determined by capsule endoscopy, which corresponded to the pharmacokinetic data. By contrast, the in vitro disintegration times of the same formulations were 5.5 and 4.0 min, respectively, when determined by the Ph. Eur. disintegration test. In conclusion, capsule endoscopy can be used to determine the in vivo tablet disintegration behavior. By contrast, the in vitro methods appear to not be predictive of the disintegration behavior in vivo but may be used to rank the order the formulations with respect to disintegration time.

3.
Eur J Pharm Sci ; 109: 191-199, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28803922

RESUMO

OBJECTIVE: The aim of the present study was to study the oral performance of furosemide in neonates and young infants using a newly developed in vitro model simulating digestion and drug solubilization in the gastrointestinal (GI) tract of the human neonate and young infant population (age 0-2months). METHODS: The utilized in vitro model was designed to mimic the digestion and drug solubilization processes occurring in the stomach, and the small intestine of the neonate and young infant population, using physiologically relevant media, volumes and digestive enzymes. Overall the experimental model setup was based on the dynamic in vitro lipolysis model previously described by Fernandez et al. (2009). The amount of furosemide solubilized in the aqueous phase during a digestion study was used as an estimate for the amount of drug available for absorption in vivo. By varying different factors in the model setup, e.g. presence of food (food-effect), effect of digestion (tested with and without addition of digestive enzymes), and properties of the dosage form, it was possible to estimate the importance of these factors in vivo. KEY FINDINGS AND CONCLUSIONS: The present in vitro data suggest that the oral performance of furosemide in neonates and young infants will be increased by the presence of food (frequent feedings) due to increased drug solubilization, however, not influenced by the GI digestion of this food. The properties of the dosage form (immediate release tablets) did not affect the drug solubilization as compared to administration of the pure drug powder.


Assuntos
Diuréticos/metabolismo , Furosemida/metabolismo , Mucosa Gástrica/metabolismo , Intestino Delgado/metabolismo , Modelos Biológicos , Digestão , Diuréticos/química , Jejum/metabolismo , Interações Alimento-Droga , Furosemida/química , Humanos , Concentração de Íons de Hidrogênio , Lactente , Recém-Nascido , Pós , Solubilidade , Estômago/química , Comprimidos
4.
J Pharm Sci ; 106(4): 1183-1186, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28057543

RESUMO

The high-throughput in vitro intestinal lipolysis model (HTP) applicable for rapid and low-scale screening of lipid-based drug delivery systems (LbDDSs) was optimized and adjusted as to be conducted in 96-well plates (HTP-96). Three different LbDDSs (I-III) loaded with danazol or cinnarizine were used as model systems. The distributions of cinnarizine and danazol in the aqueous and precipitated digestion phases generated during lipolysis in HTP-96 were compared with previously published data obtained from HTP. The final HTP-96 setup resulted in the same rank order as the original HTP model with regard to solubilization in the aqueous phase during digestion: LbDDS III > LbDDS II > LbDDS I for danazol and LbDDS III ≈ LbDDS II ≈ LbDDS I for cinnarizine. HTP-96 is a useful model for fast performance assessment of LbDDS in a small scale.


Assuntos
Cinarizina/metabolismo , Danazol/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Metabolismo dos Lipídeos/fisiologia , Lipólise/fisiologia , Modelos Biológicos , Cinarizina/administração & dosagem , Danazol/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/administração & dosagem , Lipólise/efeitos dos fármacos , Fatores de Tempo
5.
AAPS PharmSciTech ; 18(2): 317-329, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27796909

RESUMO

The focus on drug delivery for the pediatric population has been steadily increasing in the last decades. In terms of developing in vitro models simulating characteristics of the targeted pediatric population, with the purpose of predicting drug product performance after oral administration, it is important to simulate the gastro-intestinal conditions and processes the drug will encounter upon oral administration. When a drug is administered in the fed state, which is commonly the case for neonates, as they are typically fed every 3 h, the digestion of the milk will affect the composition of the fluid available for drug dissolution/solubilization. Therefore, in order to predict the solubilized amount of drug available for absorption, an in vitro model simulating digestion in the gastro-intestinal tract should be utilized. In order to simulate the digestion process and the drug solubilization taking place in vivo, the following aspects should be considered; physiologically relevant media, media volume, use of physiological enzymes in proper amounts, as well as correct pH and addition of relevant co-factors, e.g., bile salts and co-enzymes. Furthermore, physiological transit times and appropriate mixing should be considered and mimicked as close as possible. This paper presents a literature review on physiological factors relevant for digestion and drug solubilization in neonates. Based on the available literature data, a novel in vitro digestion model simulating digestion and drug solubilization in the neonate and young infant pediatric population (2 months old and younger) was designed.


Assuntos
Digestão/fisiologia , Sistemas de Liberação de Medicamentos/métodos , Trato Gastrointestinal/metabolismo , Absorção Intestinal/fisiologia , Preparações Farmacêuticas/metabolismo , Administração Oral , Ácidos e Sais Biliares/metabolismo , Química Farmacêutica/métodos , Simulação por Computador , Humanos , Modelos Biológicos , Pediatria , Solubilidade
6.
PLoS One ; 11(12): e0168050, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27992455

RESUMO

Drug targeting to the colon via the oral administration route for local treatment of e.g. inflammatory bowel disease and colonic cancer has several advantages such as needle-free administration and low infection risk. A new source for delivery is plant-polysaccharide based delivery platforms such as Rhamnogalacturonan-I (RG-I). In the gastro-intestinal tract the RG-I is only degraded by the action of the colonic microflora. For assessment of potential drug delivery properties, RG-I based microcapsules (~1 µm in diameter) were prepared by an interfacial poly-addition reaction. The cross-linked capsules were loaded with a fluorescent dye (model drug). The capsules showed negligible and very little in vitro release when subjected to media simulating gastric and intestinal fluids, respectively. However, upon exposure to a cocktail of commercial RG-I cleaving enzymes, ~ 9 times higher release was observed, demonstrating that the capsules can be opened by enzymatic degradation. The combined results suggest a potential platform for targeted drug delivery in the terminal gastro-intestinal tract.


Assuntos
Cápsulas/síntese química , Pectinas/farmacocinética , Animais , Cápsulas/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Humanos , Tamanho da Partícula , Solanum tuberosum/química
7.
Mol Pharm ; 12(11): 4067-76, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26393273

RESUMO

The aim of this study was to investigate if molecular interactions between the weak base cinnarizine and lipolysis products were affecting the morphology of precipitated drug formed during in vitro lipolysis. In vitro lipolysis studies of a self-nanoemulsifying drug delivery system with or without cinnarizine were conducted. The digestion phases (aqueous phase and pellet phase) were separated by ultracentrifugation, and the pellet was isolated and lyophilized. The lyophilized pellets were examined by X-ray powder diffraction, (13)C solid-state nuclear magnetic resonance ((13)C NMR), (1)H liquid-state NMR ((1)H NMR) spectroscopy and differential scanning calorimetry (DSC). The (13)C NMR data indicated that the carbonyl groups and aliphatic part of the lipids undergo structural changes when the pellet contains cinnarizine. The (1)H NMR data suggests interactions occurring around the nitrogens on cinnarizine and the carboxylic group of fatty acids. DSC thermograms showed cinnarizine to be homogeneously incorporated into the lipids of the pellet, and no free amorphous cinnarizine was present. The three techniques (13)C NMR, (1)H NMR, and DSC complement each other and suggest interactions to occur between fatty acids and cinnarizine, which in turn favors amorphous precipitation.


Assuntos
Bloqueadores dos Canais de Cálcio/química , Precipitação Química , Cinarizina/química , Sistemas de Liberação de Medicamentos , Lipídeos/química , Varredura Diferencial de Calorimetria , Química Farmacêutica , Portadores de Fármacos , Lipólise , Solubilidade , Fatores de Tempo
8.
Eur J Pharm Biopharm ; 94: 493-500, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26159837

RESUMO

PURPOSE: To develop a high-throughput in vitro intestinal lipolysis (HTP) model, without any means of pH-stat-titration, to enable a fast evaluation of lipid-based drug delivery systems (LbDDS). MATERIAL AND METHOD: The HTP model was compared to the traditionally used dynamic in vitro lipolysis (DIVL) model with regard to the extent of lipid digestion and drug distribution of two poorly soluble model drugs (cinnarizine and danazol), during digestion of three LbDDS (LbDDS I-III). RESULT: The HTP model was able to maintain pH around 6.5 during digestion, without the addition of NaOH to neutralize the free fatty acids (FFAs), due to an increased buffer capacity. Cinnarizine was primarily located in the aqueous phase during digestion of all three LbDDS and did not differ significantly between the two models. The distribution of danazol varied from formulation to formulation, but no significant difference between the models was observed. The triacylglycerides (TAG) in LbDDS III were digested to the same extent in both models, whereas the TAG present in LbDDS II was digested slightly less in the HTP model. No TAG was present in LbDDS I and digestion was therefore not analyzed. CONCLUSION: The HTP model is able to predict drug distribution during digestion of LbDDS containing poorly water soluble drugs in the same manner as the DIVL model. Thus the HTP model might prove applicable for high-throughput evaluation of LbDDS in e.g. 96 well plates or small scale dissolution equipment.


Assuntos
Portadores de Fármacos/química , Ensaios de Triagem em Larga Escala/métodos , Mucosa Intestinal/metabolismo , Lipídeos/química , Lipólise , Modelos Biológicos , Cromatografia Líquida de Alta Pressão , Cinarizina/administração & dosagem , Cinarizina/química , Cinarizina/farmacocinética , Danazol/administração & dosagem , Danazol/química , Danazol/farmacocinética , Portadores de Fármacos/farmacocinética , Cinética , Tamanho da Partícula
9.
Pharm Res ; 32(4): 1279-87, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25288015

RESUMO

PURPOSE: Lipid-based formulations (LBF) are substrates for digestive lipases and digestion can significantly alter their properties and potential to support drug absorption. LBFs have been widely examined for their behaviour in the presence of pancreatic enzymes. Here, the impact of gastric lipase on the digestion of representative formulations from the Lipid Formulation Classification System has been investigated. METHODS: The pHstat technique was used to measure the lipolysis by recombinant dog gastric lipase (rDGL) of eight LBFs containing either medium (MC) or long (LC) chain triglycerides and a range of surfactants, at various pH values [1.5 to 7] representative of gastric and small intestine contents under both fasting and fed conditions. RESULTS: All LBFs were hydrolyzed by rDGL. The highest specific activities were measured at pH 4 with the type II and IIIA MC formulations that contained Tween®85 or Cremophor EL respectively. The maximum activity on LC formulations was recorded at pH 5 for the type IIIA-LC formulation. Direct measurement of LBF lipolysis using the pHstat, however, was limited by poor LC fatty acid ionization at low pH. CONCLUSIONS: Since gastric lipase initiates lipid digestion in the stomach, remains active in the intestine and acts on all representative LBFs, its implementation in future standardized in vitro assays may be beneficial. At this stage, however, routine use remains technically challenging.


Assuntos
Química Farmacêutica , Lipase/metabolismo , Lipólise , Preparações Farmacêuticas/metabolismo , Estômago/enzimologia , Triglicerídeos/metabolismo , Animais , Química Farmacêutica/métodos , Química Farmacêutica/normas , Digestão , Cães , Concentração de Íons de Hidrogênio , Hidrólise , Lipase/química , Pancreatina/química , Pancreatina/metabolismo , Preparações Farmacêuticas/química , Proteínas Recombinantes , Triglicerídeos/química
10.
AAPS J ; 16(6): 1344-57, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25274609

RESUMO

The impact of pancreatin and calcium addition on a wide array of lipid-based formulations (LBFs) during in vitro lipolysis, with regard to digestion rates and distribution of the model drug danazol, was investigated. Pancreatin primarily affected the extent of digestion, leaving drug distribution somewhat unaffected. Calcium only affected the extent of digestion slightly but had a major influence on drug distribution, with more drug precipitating at higher calcium levels. This is likely to be caused by a combination of removal of lipolysis products from solution by the formation of calcium soaps and calcium precipitating with bile acids, events known to reduce the solubilizing capacity of LBFs dispersed in biorelevant media. Further, during the digestion of hydrophilic LBFs, like IIIA-LC, the un-ionized-ionized ratio of free fatty acids (FFA) remained unchanged at physiological calcium levels. This makes the titration curves at pH 6.5 representable for digestion. However, caution should be taken when interpreting lipolysis curves of lipophilic LBFs, like I-LC, at pH 6.5, at physiological levels of calcium (1.4 mM); un-ionized-ionized ratio of FFA might change during digestion, rendering the lipolysis curve at pH 6.5 non-representable for the total digestion. The ratio of un-ionized-ionized FFAs can be maintained during digestion by applying non-physiological levels of calcium, resulting in a modified drug distribution with increased drug precipitation. However, as the main objective of the in vitro digestion model is to evaluate drug distribution, which is believed to have an impact on bioavailability in vivo, a physiological level (1.4 mM) of calcium is preferred.


Assuntos
Cálcio/química , Danazol/farmacocinética , Digestão/fisiologia , Lipídeos/química , Lipólise , Pancreatina/química , Cálcio/fisiologia , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Danazol/química , Relação Dose-Resposta a Droga , Ácidos Graxos/análise , Técnicas In Vitro , Modelos Biológicos , Pancreatina/metabolismo , Solubilidade
11.
J Pharm Sci ; 103(8): 2441-55, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24985238

RESUMO

The Lipid Formulation Classification System Consortium looks to develop standardized in vitro tests and to generate much-needed performance criteria for lipid-based formulations (LBFs). This article highlights the value of performing a second, more stressful digestion test to identify LBFs near a performance threshold and to facilitate lead formulation selection in instances where several LBF prototypes perform adequately under standard digestion conditions (but where further discrimination is necessary). Stressed digestion tests can be designed based on an understanding of the factors that affect LBF performance, including the degree of supersaturation generated on dispersion/digestion. Stresses evaluated included decreasing LBF concentration (↓LBF), increasing bile salt, and decreasing pH. Their capacity to stress LBFs was dependent on LBF composition and drug type: ↓LBF was a stressor to medium-chain glyceride-rich LBFs, but not more hydrophilic surfactant-rich LBFs, whereas decreasing pH stressed tolfenamic acid LBFs, but not fenofibrate LBFs. Lastly, a new Performance Classification System, that is, LBF composition independent, is proposed to promote standardized LBF comparisons, encourage robust LBF development, and facilitate dialogue with the regulatory authorities. This classification system is based on the concept that performance evaluations across three in vitro tests, designed to subject a LBF to progressively more challenging conditions, will enable effective LBF discrimination and performance grading.


Assuntos
Química Farmacêutica/métodos , Excipientes/química , Lipídeos/química , Preparações Farmacêuticas/química , Analgésicos/química , Ácidos e Sais Biliares/química , Fenofibrato/química , Concentração de Íons de Hidrogênio , Hipolipemiantes/química , Solubilidade , Tensoativos/química , ortoaminobenzoatos/química
12.
J Pharm Pharmacol ; 66(11): 1567-75, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24961657

RESUMO

OBJECTIVES: Anticancer indirubins are poorly soluble in water. Here, digestion of four self-emulsifying drug delivery systems (SEDDS) containing E804 (indirubin-3'-oxime 2,3-dihydroxypropyl ether) was compared by dynamic lipolysis and bioavailability studies. Used lipids were either medium-chain or long-chain glycerides. METHODS: SEDDS E804 were developed. In-vitro lipolysis was carried out at pH 6.5 (37°C) by adding pancreatic lipase (800 U/ml) and controlling by CaCl2 and NaOH addition. E804 content was quantified in the aqueous micellar phase and precipitate using HPLC. Oral bioavailability was determined in rats. Plasma drug content was determined by liquid chromatography (LC)-mass spectrometry. KEY FINDINGS: All formulations reserved E804 in the aqueous micellar phase up to 60 min. Precipitation proceeded towards the end of lipolysis up to 45%. Lowest level of precipitation (21%) occurred with long-chain lipids (LC-SEDDS). However, lipolysis was not really discriminative between formulations as the drug mainly stayed in solution. Oral administration of formulations resulted in similar bioavailability of E804 with no significantly different area under the concentration curve. Only medium-chain self-nanoemulsifying drug delivery systems revealed shorter Tmax compared with the other formulations. CONCLUSION: E804 had a similar performance in four lipid/surfactant systems. All formulations increased the bioavailability of E804 with no significant difference.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Emulsões/farmacocinética , Glicerídeos/química , Administração Oral , Animais , Disponibilidade Biológica , Química Farmacêutica , Indóis/sangue , Indóis/farmacocinética , Lipólise , Masculino , Micelas , Ratos Wistar , Solubilidade , Tensoativos/química , Água
13.
Pharm Res ; 30(12): 3059-76, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23661145

RESUMO

PURPOSE: Recent studies have shown that digestion of lipid-based formulations (LBFs) can stimulate both supersaturation and precipitation. The current study has evaluated the drug, formulation and dose-dependence of the supersaturation - precipitation balance for a range of LBFs. METHODS: Type I, II, IIIA/B LBFs containing medium-chain (MC) or long-chain (LC) lipids, and lipid-free Type IV LBF incorporating different doses of fenofibrate or tolfenamic acid were digested in vitro in a simulated intestinal medium. The degree of supersaturation was assessed through comparison of drug concentrations in aqueous digestion phases (APDIGEST) during LBF digestion and the equilibrium drug solubility in the same phases. RESULTS: Increasing fenofibrate or tolfenamic acid drug loads (i.e., dose) had negligible effects on LC LBF performance during digestion, but promoted drug crystallization (confirmed by XRPD) from MC and Type IV LBF. Drug crystallization was only evident in instances when the calculated maximum supersaturation ratio (SR(M)) was >3. This threshold SR(M) value was remarkably consistent across all LBF and was also consistent with previous studies with danazol. CONCLUSIONS: The maximum supersaturation ratio (SR(M)) provides an indication of the supersaturation 'pressure' exerted by formulation digestion and is strongly predictive of the likelihood of drug precipitation in vitro. This may also prove effective in discriminating the in vivo performance of LBFs.


Assuntos
Fenofibrato/administração & dosagem , Hipolipemiantes/administração & dosagem , Lipídeos/química , Veículos Farmacêuticos/química , ortoaminobenzoatos/administração & dosagem , Precipitação Química , Cristalização , Digestão , Fenofibrato/química , Humanos , Hipolipemiantes/química , Intestinos/fisiologia , Metabolismo dos Lipídeos , Solubilidade , ortoaminobenzoatos/química
14.
Mol Pharm ; 9(11): 3286-300, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23030411

RESUMO

The LFCS Consortium was established to develop standardized in vitro tests for lipid-based formulations (LBFs) and to examine the utility of these tests to probe the fundamental mechanisms that underlie LBF performance. In this publication, the impact of bile salt (sodium taurodeoxycholate, NaTDC) concentration and drug loading on the ability of a range of representative LBFs to generate and sustain drug solubilization and supersaturation during in vitro digestion testing has been explored and a common driver of the potential for drug precipitation identified. Danazol was used as a model poorly water-soluble drug throughout. In general, increasing NaTDC concentrations increased the digestion of the most lipophilic LBFs and promoted lipid (and drug) trafficking from poorly dispersed oil phases to the aqueous colloidal phase (AP(DIGEST)). High NaTDC concentrations showed some capacity to reduce drug precipitation, although, at NaTDC concentrations ≥3 mM, NaTDC effects on either digestion or drug solubilization were modest. In contrast, increasing drug load had a marked impact on drug solubilization. For LBFs containing long-chain lipids, drug precipitation was limited even at drug loads approaching saturation in the formulation and concentrations of solubilized drug in AP(DIGEST) increased with increased drug load. For LBFs containing medium-chain lipids, however, significant precipitation was evident, especially at higher drug loads. Across all formulations a remarkably consistent trend emerged such that the likelihood of precipitation was almost entirely dependent on the maximum supersaturation ratio (SR(M)) attained on initiation of digestion. SR(M) defines the supersaturation "pressure" in the system and is calculated from the maximum attainable concentration in the AP(DIGEST) (assuming zero precipitation), divided by the solubility of the drug in the colloidal phases formed post digestion. For LBFs where phase separation of oil phases did not occur, a threshold value for SR(M) was evident, regardless of formulation composition and drug solubilization reduced markedly above SR(M) > 2.5. The threshold SR(M) may prove to be an effective tool in discriminating between LBFs based on performance.


Assuntos
Ácidos e Sais Biliares/farmacologia , Danazol/química , Lipídeos/química , Tecnologia Farmacêutica/normas , Água/química , Química Farmacêutica , Danazol/metabolismo , Digestão , Cinética , Solubilidade/efeitos dos fármacos , Tecnologia Farmacêutica/métodos
15.
J Pharm Sci ; 101(9): 3360-80, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22644939

RESUMO

The Lipid Formulation Classification System Consortium is an industry-academia collaboration, established to develop standardized in vitro methods for the assessment of lipid-based formulations (LBFs). In this first publication, baseline conditions for the conduct of digestion tests are suggested and a series of eight model LBFs are described to probe test performance across different formulation types. Digestion experiments were performed in vitro using a pH-stat apparatus and danazol employed as a model poorly water-soluble drug. LBF digestion (rate and extent) and drug solubilization patterns on digestion were examined. To evaluate cross-site reproducibility, experiments were conducted at two sites and highly consistent results were obtained. In a further refinement, bench-top centrifugation was explored as a higher throughput approach to separation of the products of digestion (and compared with ultracentrifugation), and conditions under which this method was acceptable were defined. Drug solubilization was highly dependent on LBF composition, but poorly correlated with simple performance indicators such as dispersion efficiency, confirming the utility of the digestion model as a means of formulation differentiation.


Assuntos
Danazol/química , Digestão , Portadores de Fármacos , Ensaios de Triagem em Larga Escala/normas , Lipídeos/química , Tecnologia Farmacêutica/normas , Centrifugação/normas , Química Farmacêutica/normas , Danazol/metabolismo , Danazol/normas , Guias como Assunto , Concentração de Íons de Hidrogênio , Cinética , Metabolismo dos Lipídeos , Lipídeos/normas , Variações Dependentes do Observador , Padrões de Referência , Reprodutibilidade dos Testes , Solubilidade , Tecnologia Farmacêutica/métodos
16.
Int J Pharm ; 417(1-2): 245-55, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21392564

RESUMO

With the increasing interest in lipid and surfactant based drug delivery systems (LSBDDS) for oral delivery of poorly soluble drugs, the need for efficient development tools is emerging. In vitro lipolysis models, simulating the digestion in the small intestine, is a promising tool in this regard. Several different in vitro lipolysis models have been used for characterization of LSBDDS, all using porcine pancreatin as lipase source, and primarily differing in the addition scheme of calcium and the kind of bile acids employed. Both calcium and bile influence the lipolysis. Calcium have been used both as fixed addition at the beginning of the experiment and with a continuous addition during lipolysis. Both pure bile acids and crude porcine bile extract have been used. Lipolysis of LSBDDS will generate mixed micelles, as well as lamellar and hexagonal phases. These have been characterized by dynamic light scattering, cryogenic transmission electron microscopy and small angle X-ray scattering. The faith of drug during in vitro digestion of a LSBDDS is often studied by ultracentrifugation and quantification of drug in the different phases formed. Further, drug precipitated during in vitro lipolysis has been characterized by X-ray powder diffraction and polarized light microscopy.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Lipídeos/química , Lipólise , Tensoativos/química , Animais , Humanos
17.
J Pharm Sci ; 99(12): 4982-91, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20574997

RESUMO

Precipitation of cinnarizine during in vitro lipolysis of a self-microemulsifying drug delivery system (SMEDDS) was characterized to gain a better understanding of the mechanisms behind the precipitation. During in vitro lipolysis of the SMEDDS with or without cinnarizine, samples were taken at several timepoints and ultracentrifuged. Cinnarizine content in the pellet increased from 4% to 59% during lipolysis. The precipitation of cinnarizine during in vitro lipolysis correlated well with the degree of lipid digestion, determined by sodium hydroxide addition. The pellet from the endpoint of lipolysis was isolated and subjected to dissolution in biorelevant media. Dissolution rate of cinnarizine from pellets containing precipitated cinnarizine was initially 10-fold higher than dissolution from blank pellet spiked with crystalline cinnarizine, reaching more than 50% drug dissolved in the first minute. Pellets were further characterized by X-ray powder diffraction (XRPD) and polarized light microscopy (PLM). Both methods indicated the presence of liquid crystalline phases of calcium fatty acid soaps, but no presence of crystalline cinnarizine in the pellet. Overall, dissolution studies along with XRPD and PLM analysis indicate that cinnarizine precipitating during in vitro lipolysis of this SMEDDS is not crystalline, suggesting an either amorphous form or a molecular dispersion.


Assuntos
Precipitação Química , Lipólise , Preparações Farmacêuticas/química , Cinarizina/química , Digestão , Sistemas de Liberação de Medicamentos , Lipídeos/química , Cristais Líquidos , Microscopia de Polarização , Solubilidade , Fatores de Tempo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...