Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(3): 2269-2276, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38165646

RESUMO

Developing a better understanding of water ordering and hydroxylation at oxide mineral surfaces is important across a breath of application spaces. Recent vibrational sum frequency generation (vSFG) measurements on MgO(100) surfaces at ambient conditions showed that water dissociates and hydroxylates the surface yielding a non-hydrogen bonded hydroxyl species. Starting from previously determined water hydroxylation patterns on MgO(100), we performed ab initio thermodynamic calculations and vibrational analysis to compare with the vSFG observations. At ambient conditions (i.e., T = 298.15 K and pH2O = 32 mbar), the most thermodynamically favorable surface hydroxylation is found to be p(3 × 2) - 8H2O, involving a dissociation of 25% of the adsorbed water. Analysis of the vibrational density of states for this hydroxylation configuration yielded three different hydrogen bonding environments with the frequency of the peaks in very good agreement with the vSFG measurements. However, the non-H-bonded spectral feature on this surface is predicted to be similar to that expected for Mg(OH)2, a thermodynamically downhill alteration of the surface that must be independently ruled out before one can be fully confident in the apparent theory/vSFG agreement. Our study provides more insights into the ordering and structure of water monolayer at MgO(100) surface at ambient conditions and completes previous theoretical and experimental analysis performed at low temperature and ultra-high vacuum conditions.

2.
Nat Commun ; 14(1): 6300, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813861

RESUMO

Crystal dissolution, which is a fundamental process in both natural and technological settings, has been predominately viewed as a process of ion-by-ion detachment into a surrounding solvent. Here we report a mechanism of dissolution by particle detachment (DPD) that dominates in mesocrystals formed via crystallization by particle attachment (CPA). Using liquid phase electron microscopy to directly observe dissolution of hematite crystals - both compact rhombohedra and mesocrystals of coaligned nanoparticles - we find that the mesocrystals evolve into branched structures, which disintegrate as individual sub-particles detach. The resulting dissolution rates far exceed those for equivalent masses of compact single crystals. Applying a numerical generalization of the Gibbs-Thomson effect, we show that the physical drivers of DPD are curvature and strain inherently tied to the original CPA process. Based on the generality of the model, we anticipate that DPD is widespread for both natural minerals and synthetic crystals formed via CPA.

3.
Proc Natl Acad Sci U S A ; 120(23): e2101243120, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252978

RESUMO

Iron-based redox-active minerals are ubiquitous in soils, sediments, and aquatic systems. Their dissolution is of great importance for microbial impacts on carbon cycling and the biogeochemistry of the lithosphere and hydrosphere. Despite its widespread significance and extensive prior study, the atomic-to-nanoscale mechanisms of dissolution remain poorly understood, particularly the interplay between acidic and reductive processes. Here, we use in situ liquid-phase-transmission electron microscopy (LP-TEM) and simulations of radiolysis to probe and control acidic versus reductive dissolution of akaganeite (ß-FeOOH) nanorods. Informed by crystal structure and surface chemistry, the balance between acidic dissolution at rod tips and reductive dissolution at rod sides was systematically varied using pH buffers, background chloride anions, and electron beam dose. We find that buffers, such as bis-tris, effectively inhibited dissolution by consuming radiolytic acidic and reducing species such as superoxides and aqueous electrons. In contrast, chloride anions simultaneously suppressed dissolution at rod tips by stabilizing structural elements while promoting dissolution at rod sides through surface complexation. Dissolution behaviors were systematically varied by shifting the balance between acidic and reductive attacks. The findings show LP-TEM combined with simulations of radiolysis effects can provide a unique and versatile platform for quantitatively investigating dissolution mechanisms, with implications for understanding metal cycling in natural environments and the development of tailored nanomaterials.

4.
Phys Chem Chem Phys ; 24(31): 18751-18763, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35900042

RESUMO

Natural sulfidation of silver nanomaterials can passivate the surface, while preserving desirable optical and electrical properties, which is beneficial for limiting Ag+ release and cytotoxicity. But little is known at the atomic scale about silver sulfidation mechanisms, particularly on different crystallographic terminations. Using density functional theory (DFT) calculations, we examined the process of H2S sorption and reaction on Ag(100) surfaces relevant to Ag nanowires (AgNWs). DFT energy minimizations predict a strong dissociative chemisorption of H2S on the surface yielding co-adsorbed sulfide and hydrogen atoms in specific surface sites. However, nudged elastic band (NEB) calculations suggest relatively large activation energies for both the first and second dissociation steps, due in part to overcoming the energy to cleave the S-H bond and attendant site migration from an on-top Ag site position to a hollow site position of the bound S atom. The large barriers associated with the dissociative chemisorption reaction for gas-phase H2S points to the importance of including thermochemical contributions and the influence of other components in more complex environmental media such as air or water to help complete the mechanistic picture of silver sulfidation and passivation for realistic systems.

5.
Environ Sci Technol ; 56(8): 5029-5036, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35390256

RESUMO

Over the last several decades, there have been several studies examining the radiation stability of boehmite and other aluminum oxyhydroxides, yet less is known about the impact of radiation on boehmite dissolution. Here, we investigate radiation effects on the dissolution behavior of boehmite by employing liquid-phase transmission electron microscopy (LPTEM) and varying the electron flux on the samples consisting of either single nanoplatelets or aggregated stacks. We show that boehmite nanoplatelets projected along the [010] direction exhibit uniform dissolution with a strong dependence on the electron dose rate. For nanoplatelets that have undergone oriented aggregation, we show that the dissolution occurs preferentially at the particles at the ends of the stacks that are more accessible to bulk solution than at the others inside the aggregate. In addition, at higher dose rates, electrostatic repulsion and knock-on damage from the electron beam causes delamination of the stacks and dissolution at the interfaces between particles in the aggregate, indicating that there is a threshold dose rate for electron-beam enhancement of dissolution of boehmite aggregates.

6.
Nano Lett ; 21(12): 5353-5359, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34110157

RESUMO

Mastery of order-disorder processes in highly nonequilibrium nanostructured oxides has significant implications for the development of emerging energy technologies. However, we are presently limited in our ability to quantify and harness these processes at high spatial, chemical, and temporal resolution, particularly in extreme environments. Here, we describe the percolation of disorder at the model oxide interface LaMnO3/SrTiO3, which we visualize during in situ ion irradiation in the transmission electron microscope. We observe the formation of a network of disorder during the initial stages of ion irradiation and track the global progression of the system to full disorder. We couple these measurements with detailed structural and chemical probes, examining possible underlying defect mechanisms responsible for this unique percolative behavior.


Assuntos
Nanoestruturas , Óxidos , Microscopia
7.
Commun Chem ; 4(1): 134, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36697713

RESUMO

Ferrihydrite is a poorly crystalline iron oxyhydroxide nanomineral that serves a critical role as the most bioavailable form of ferric iron for living systems. However, its atomic structure and composition remain unclear due in part to ambiguities in interpretation of X-ray scattering results. Prevailing models so far have not considered the prospect that at the level of individual nanoparticles multiple X-ray indistinguishable phases could coexist. Using ab initio thermodynamics we show that ferrihydrite is likely a nanocomposite of distinct structure types whose distribution depends on particle size, temperature, and hydration. Nanoparticles of two contrasting single-phase ferrihydrite models of Michel and Manceau are here shown to be thermodynamically equivalent across a wide range of temperature and pressure conditions despite differences in their structural water content. Higher temperature and water pressure favor the formation of the former, while lower temperature and water pressure favor the latter. For aqueous suspensions at ambient conditions, their coexistence is maximal for particle sizes up to 12 nm. The predictions inform and help resolve different observations in various experiments.

8.
J Hazard Mater ; 398: 122853, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-32768813

RESUMO

Understanding mechanistic pathways to radiolytic hydrogen generation by metal oxyhydroxide nanomaterials is challenging because of the difficulties of distinguishing key locations of OH bond scission, from structural interiors to hydroxylated surfaces to physi-sorbed water molecules. Here we exploited the interface-selectivity of vibrational sum frequency generation (VSFG) to isolate surface versus bulk hydroxyl groups for gibbsite and boehmite nanoplatelets before and after 60Co irradiation at dose levels of approximately 7.0 and 29.6 Mrad. While high-resolution microscopy revealed no effect on particle bulk and surface structures, VSFG results clearly indicated up to 83% and 94% radiation-induced surface OH bond scission for gibbsite and boehmite, respectively, a substantially higher proportion than observed for interior OH groups by IR and Raman spectroscopy. Electron paramagnetic spectroscopy revealed that the major radiolysis products bound in the mineral structures are trapped electrons, O, O2- and possibly F-centers in gibbsite, and H, O and O3- in boehmite, which persist on the time frame of several months. The entrapped radiolysis products appear to be highly stable, enduring re-hydration of particle surfaces, and likely reflect a permanent adjustment in the thermodynamic stabilities of these nanomaterials.

9.
J Phys Chem A ; 124(16): 3019-3025, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32223163

RESUMO

Reactive nitrogen species (RNS), along with reactive oxygen species (ROS), are significant products from radiolysis in solution. While much research has been focused on biological systems, these species are also important products in the autoradiolysis that occurs in nuclear waste. Here, we determine the correlation between solution constituents, particularly nitrite, and radical products in highly alkaline solutions relevant to liquid waste. Because these radicals tend to be very short-lived, we employ spin trapping in conjunction with electron paramagnetic resonance (EPR) to detect them and quantify their production. Most spin traps do not function in these conditions (>1 M NaOH); however, nitroalkanes such as nitromethane will act as spin traps in their aci form, which is dominant at high pH. To restrict the products to those originating from nitrite, we use 280-480 nm UV light to generate radicals, avoiding products from the photolysis of water. Under these circumstances, nitric oxide, nitrite radicals, and hydroxyl radicals are detected, and the trends with the concentration of the constituents of the solutions are tracked. These include nitrite, nitrate, hydroxide, and carbonate. We find that, while the equilibrium shifts with increasing pH from hydroxyl radicals to the more slowly reacting oxide radicals, the production of nitrite radicals does not decrease.

10.
ACS Omega ; 5(9): 4588-4594, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32175505

RESUMO

We apply recurrent neural networks (RNNs) to predict the time evolution of the concentration profile of multiple species resulting from a set of interconnected chemical reactions. As a proof of concept of our approach, RNNs were trained on a synthetic dataset generated by solving the kinetic equations of a system of aqueous inorganic iodine reactions that can follow after nuclear reactor accidents. We examine the minimum dataset necessary to obtain accurate predictions and explore the ability of RNNs to interpolate and extrapolate when exposed to previously unseen data. We also investigate the limits of our RNN by evaluating the robustness of the training initialization on our dataset.

11.
Proc Natl Acad Sci U S A ; 116(35): 17181-17186, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31399548

RESUMO

Oxygen defects govern the behavior of a range of materials spanning catalysis, quantum computing, and nuclear energy. Understanding and controlling these defects is particularly important for the safe use, storage, and disposal of actinide oxides in the nuclear fuel cycle, since their oxidation state influences fuel lifetimes, stability, and the contamination of groundwater. However, poorly understood nanoscale fluctuations in these systems can lead to significant deviations from bulk oxidation behavior. Here we describe the use of aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy to resolve changes in the local oxygen defect environment in [Formula: see text] surfaces. We observe large image contrast and spectral changes that reflect the presence of sizable gradients in interstitial oxygen content at the nanoscale, which we quantify through first-principles calculations and image simulations. These findings reveal an unprecedented level of excess oxygen incorporated in a complex near-surface spatial distribution, offering additional insight into defect formation pathways and kinetics during [Formula: see text] surface oxidation.

12.
J Chem Phys ; 151(4): 044107, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31370546

RESUMO

The embedding of cluster models of oxides with point charges and with extensions of the embedding which take into account the spatial extent of the cations is examined with an emphasis on the consequences of this embedding for the relative ionization and excitation energies that are measured in core-level spectroscopies. It is found that the dependence of the electronic structure of the oxides and the relative energies of different levels depend only weakly on the embedding and that relatively simple embeddings may be sufficient to provide an adequate model for determining core-level spectra. This is different from absolute values of the ionizations which, as expected, depend strongly on the details of the extended crystal; however, relative values of binding energies, as measured in photoemission, are of greater interest than the absolute values.

13.
Sci Rep ; 9(1): 8190, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160631

RESUMO

Understanding the response of ceramics operating in extreme environments is of interest for a variety of applications. Ab initio molecular dynamic simulations have been used to investigate the effect of structure and B-site (=Ti, Zr) cation composition of lanthanum-based oxides (La2B2O7) on electronic-excitation-induced amorphization. We find that the amorphous transition in monoclinic layered perovskite La2Ti2O7 occurs for a lower degree of electronic excitation than for cubic pyrochlore La2Zr2O7. While in each case the formation of O2-like molecules drives the structure to an amorphous state, an analysis of the polyhedral connection network reveals that the rotation of TiO6 octahedra in the monoclinic phase can promote such molecule formation, while such octahedral rotation is not possible in the cubic phase. However, once the symmetry of the cubic structure is broken by substituting Ti for Zr, it becomes less resistant to amorphization. A compound made of 50% Ti and 50% Zr (La2TiZrO7) is found to be more resistant in the monoclinic than in the cubic phase, which may be related to the lower bandgap of the cubic phase. These results illustrate the complex interplay of structure and composition that give rise to the radiation resistance of these important functional materials.

14.
J Environ Radioact ; 210: 105809, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30340873

RESUMO

Insights at the microscopic level of the process of radiocesium adsorption and interaction with clay mineral particles have improved substantially over the past several years, triggered by pressing social issues such as management of huge amounts of waste soil accumulated after the Fukushima Dai-ichi nuclear power plant accident. In particular, computer-based molecular modeling supported by advanced hardware and algorithms has proven to be a powerful approach. Its application can now generally encompass the full complexity of clay particle adsorption sites from basal surfaces to interlayers with inserted water molecules, to edges including fresh and weathered frayed ones. On the other hand, its methodological schemes are now varied from traditional force-field molecular dynamics on large-scale realizations composed of many thousands of atoms including water molecules to first-principles methods on smaller models in rather exacting fashion. In this article, we overview new understanding enabled by simulations across methodological variations, focusing on recent insights that connect with experimental observations, namely: 1) the energy scale for cesium adsorption on the basal surface, 2) progress in understanding the structure of clay edges, which is difficult to probe experimentally, 3) cesium adsorption properties at hydrated interlayer sites, 4) the importance of the size relationship between the ionic radius of cesium and the interlayer distance at frayed edge sites, 5) the migration of cesium into deep interlayer sites, and 6) the effects of nuclear decay of radiocesium. Key experimental observations that motivate these simulation advances are also summarized. Furthermore, some directions toward future solutions of waste soil management are discussed based on the obtained microscopic insights.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Radioisótopos de Césio , Argila , Japão , Minerais , Poluentes Radioativos do Solo
15.
J Am Chem Soc ; 140(37): 11698-11704, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30182719

RESUMO

The recent observation in parrotfish teeth of X-ray linear dichroism motivated an in-depth investigation into this spectroscopic effect in various apatite crystals, including geologic hydroxyapatite (Ca5(PO4)3OH), fluorapatite (Ca5(PO4)3F), and their biogenic counterparts in human bone, mouse enamel, and in parrotfish bone, dentin, and enameloid, the equivalent of dental enamel in certain fish. These data are important because they now enable visualization of the nano- to microscale structure of apatite crystals in teeth and bone. Polarization-dependent imaging contrast (PIC) maps of lamellar bone, obtained with a new method that minimizes space-charge and charging effects, show the expected rotating apatite crystal orientations. PIC maps of mouse enamel reveal a complex arrangement of hydroxyapatite crystals perpendicular to the dentin-enamel junction, with rods arranged in a decussation pattern in inner enamel and nearly parallel to one another in outer enamel. In both inner and outer enamel crystal c-axes are not always aligned with the rod elongation direction.


Assuntos
Apatitas/química , Animais , Osso e Ossos/química , Esmalte Dentário/química , Humanos , Camundongos , Raios X
16.
J Environ Radioact ; 189: 135-145, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29665576

RESUMO

Insights at the microscopic level of the process of radiocesium adsorption and interaction with clay mineral particles have improved substantially over the past several years, triggered by pressing social issues such as management of huge amounts of waste soil accumulated after the Fukushima Dai-ichi nuclear power plant accident. In particular, computer-based molecular modeling supported by advanced hardware and algorithms has proven to be a powerful approach. Its application can now generally encompass the full complexity of clay particle adsorption sites from basal surfaces to interlayers with inserted water molecules, to edges including fresh and weathered frayed ones. On the other hand, its methodological schemes are now varied from traditional force-field molecular dynamics on large-scale realizations composed of many thousands of atoms including water molecules to first-principles methods on smaller models in rather exacting fashion. In this article, we overview new understanding enabled by simulations across methodological variations, focusing on recent insights that connect with experimental observations, namely: 1) the energy scale for cesium adsorption on the basal surface, 2) progress in understanding the structure of clay edges, which is difficult to probe experimentally, 3) cesium adsorption properties at hydrated interlayer sites, 4) the importance of the size relationship between the ionic radius of cesium and the interlayer distance at frayed edge sites, 5) the migration of cesium into deep interlayer sites, and 6) the effects of nuclear decay of radiocesium. Key experimental observations that motivate these simulation advances are also summarized. Furthermore, some directions toward future solutions of waste soil management are discussed based on the obtained microscopic insights.


Assuntos
Radioisótopos de Césio/química , Minerais/química , Modelos Químicos , Poluentes Radioativos do Solo/química , Adsorção , Silicatos de Alumínio , Radioisótopos de Césio/análise , Argila , Acidente Nuclear de Fukushima , Japão , Monitoramento de Radiação , Poluentes Radioativos do Solo/análise
17.
Environ Sci Technol ; 52(5): 2751-2759, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29405066

RESUMO

Despite substantial experimental evidence for Fe(II)-Fe(III) oxide electron transfer, computational chemistry calculations suggest that oxidation of sorbed Fe(II) by goethite is kinetically inhibited on structurally perfect surfaces. We used a combination of 57Fe Mössbauer spectroscopy, synchrotron X-ray absorption and magnetic circular dichroism (XAS/XMCD) spectroscopies to investigate whether Fe(II)-goethite electron transfer is influenced by defects. Specifically, Fe L-edge and O K-edge XAS indicates that the outermost few Angstroms of goethite synthesized by low temperature Fe(III) hydrolysis is iron deficient relative to oxygen, suggesting the presence of defects from Fe vacancies. This nonstoichiometric goethite undergoes facile Fe(II)-Fe(III) oxide electron transfer, depositing additional goethite consistent with experimental precedent. Hydrothermal treatment of this goethite, however, appears to remove defects, decrease the amount of Fe(II) oxidation, and change the composition of the oxidation product. When hydrothermally treated goethite was ground, surface defect characteristics as well as the extent of electron transfer were largely restored. Our findings suggest that surface defects play a commanding role in Fe(II)-goethite redox interaction, as predicted by computational chemistry. Moreover, it suggests that, in the environment, the extent of this interaction will vary depending on diagenetic history, local redox conditions, as well as being subject to regeneration via seasonal fluctuations.


Assuntos
Compostos Ferrosos , Compostos de Ferro , Elétrons , Compostos Férricos , Minerais , Oxirredução
18.
Phys Chem Chem Phys ; 20(6): 4396-4403, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29372200

RESUMO

Cluster models of condensed systems are often used to simulate the core-level spectra obtained with X-ray Photoelectron Spectroscopy, XPS, or with X-ray Absorption Spectroscopy, XAS, especially for near edge features. The main objective of this paper is to examine the dependence of the predicted L2,3 edge XAS of α-Fe2O3, an example of a high spin ionic crystal, on increasingly realistic models of the condensed system. It is shown that an FeO6 cluster model possessing the appropriate local site symmetry describes most features of the XAS and is a major improvement over the isolated Fe3+ cation. In contrast, replacing next nearest neighbor positive point charges with Sc3+, a closed shell cation of similar spatial extent to Fe3+, only marginally improves the match to experiment. This work suggests that second nearest neighbor effects are negligible. Rather, major improvements to the predicted L2,3 edge XAS likely requires additional many body effects that go beyond the present study in which the multiplets are restricted to arise from angular momentum coupling within a single open shell configuration.

19.
J Chem Phys ; 147(22): 224306, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29246056

RESUMO

We describe a detailed analysis of the features of the X-ray adsorption spectra at the Fe L2,3 edge of FeCl4-. The objective of this analysis is to explain the origin of the complex features in relation to properties of the wavefunctions, especially for the excited states. These properties include spin-orbit and ligand field splittings where a novel aspect of the dipole selection rules is applied to understand the influence of these splittings on the spectra. We also explicitly take account of the intermediate coupling of the open core and valence shell electrons. Our analysis also includes comparison of theory and experiment for the Fe L2,3 edge and comparison of theoretical predictions for the Fe3+ cation and FeCl4-. The electronic structure is obtained from theoretical wavefunctions for the ground and excited states.

20.
J Phys Chem A ; 121(40): 7613-7618, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-28933158

RESUMO

X-ray absorption near-edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) spectroscopies are tools in widespread use for providing detailed local atomic structure, oxidation state, and magnetic structure information for materials and organometallic complexes. The analysis of these spectra for transition-metal L-edges is routinely performed on the basis of ligand-field multiplet theory because one- and two-particle mean-field ab initio methods typically cannot describe the multiplet structure. Here we show that multireference configuration interaction (MRCI) calculations can satisfactorily reproduce measured XANES spectra for a range of complex iron oxide materials including hematite and magnetite. MRCI Fe L2,3-edge XANES and XMCD spectra of Fe(II)O6, Fe(III)O6, and Fe(III)O4 in magnetite are found to be in very good qualitative agreement with experiment and multiplet calculations. Point-charge embedding and small distortions of the first-shell oxygen ligands have only small effects. Oxygen K-edge XANES/XMCD spectra for magnetite investigated by a real-space Green's function approach complete the very good qualitative agreement with experiment. Material-specific differences in local coordination and site symmetry are well reproduced, making the approach useful for assigning spectral features to specific oxidation states and coordination environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...