Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 277(Pt 3): 134348, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39089557

RESUMO

In this study, four adsorbents were developed: layered silicate magadiite material (mag), Hexadecyltrimethylammonium intercalated magadiite (HDTMA@mag), a cross-linked composite of sodium alginate and magadiite (ALG@mag) and a cross-linked composite of sodium alginate and HDTMA@magadiite (ALG@HDTMA@mag). The adsorbents were evaluated for their effectiveness in removing of Methylene Blue (MB) and Eriochrome Black T (EBT) dyes. The prepared adsorbents were characterized using SEM, XRD, FTIR, and zeta potential measurements. Kinetic modeling results indicated that both film diffusion and intraparticle diffusion are useful as rate-determining processes in adsorption for all adsorbents. For both dyes, the Langmuir isotherm model provided a good correlation with the adsorption equilibrium data. ANOVA analysis for the best adsorbent (ALG@HDTMA@mag beads) revealed that MB removal was significantly influenced by the positive individual effects of contact time and ALG@HDTMA@mag dose. However, the individual effect of MB concentration exhibited an antagonistic effect throughout the adsorption process. The optimal parameters for achieving an adsorption capacity of 118.54 mg/g were a dye concentration of 60 ppm, a contact period of 1800 min, and an ALG@HDTMA@mag dose of 50 mg.


Assuntos
Alginatos , Corantes , Águas Residuárias , Poluentes Químicos da Água , Purificação da Água , Alginatos/química , Corantes/química , Corantes/isolamento & purificação , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Águas Residuárias/química , Cinética , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Azul de Metileno/química , Azul de Metileno/isolamento & purificação , Compostos Azo/química , Compostos Azo/isolamento & purificação
2.
Int J Biol Macromol ; 251: 126270, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37582434

RESUMO

Biodegradable and very low-cost adsorbent beads were prepared from date pits powder (DP) and sodium alginate (SA). DP to SA ratios was varied (1/2, 1/4 and 1/6) and used to eliminate Crystal violet (CV) a cationic dye. Adsorbents were characterized by FTIR, SEM-EDS, UV-vis DR, TGA and the point of zero charge (pHPZC). The optimal composite beads SA@6DP show high adsorption capacities of 83.565 mg/g toward CV than SA@2DP and SA@4DP. The kinetics investigation showed that the adsorption is well described by the pseudo-second-order kinetic (R2 = 0.998). The thermodynamics and isotherms studies exhibit that the adsorption phenomenon for SA@6DP adsorbent is endothermic and significantly fitted with the Redlich-Peterson model. The experimental adsorption tests were optimized by the Box-Behnken design (BBD) which led to conclude the maximal CV removal efficiency achieved by SA@6DP was 99.873 % using [CV] = 50 mg/L, adsorbent mass = 20 mg and 48 h of contact time. The theoretical calculation proved that the CV molecules favor the mode of attack due to their electrophilic character and can accept the SA@6DP adsorbent electrons more easily to form an anti-bonding orbital. SA@6DP hydrogel beads are therefore an exceptional bio-adsorbent that offers excellent adsorption performance.

3.
Int J Biol Macromol ; 233: 123582, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764345

RESUMO

Nickel oxide nanoparticles supported activated carbon (AC-NiO) was fabricated using thermal activation. Then, AC-NiO composite was immobilized on alginate beads to obtain 3-dimensional network structure ALG@AC-NiO nanocomposite beads for catalytic reduction of Congo red (CR) dye. The resulting nanocomposite beads were identified by various physical techniques. The crystalline nature and dispersion of NiO nanoparticles was defined by the XRD and EDS techniques, respectively. ALG@AC-NiO beads have a Ni element content of 4.65 wt% with an average NiO particle diameter of 23 nm. The statistical approach mathematically describes the catalytic reduction of the CR dye as a function of the NaBH4 concentration, the catalyst dose and the concentration of the CR dye modeled by a BBD-RSM. According to the statistical modeling and the optimization process, the catalytic optimum conditions were obtained for NaBH4 concentration of 0.05 M, catalyst dose of 11 mg and CR dye concentration of 80 ppm who permit meet 99.67 % of CR dye conversion. The adjusted coefficient of determination (R2 = 0.9957) indicates that the considered model was quite suitable with a good correlation between the experiment and predicted.


Assuntos
Carvão Vegetal , Nanopartículas , Compostos Azo/química , Alginatos/química , Nanopartículas/química , Vermelho Congo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA