Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Insects ; 14(7)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37504661

RESUMO

The brown marmorated stink bug (BMSB), Halyomorpha halys, is a phytophagous invasive pest native to south-eastern Asia, and it is now distributed worldwide. This species is considered to be one of the most damaging insect pests in North America and in Europe. In agriculture, the predominant approach to managing BMSB is based on the use of insecticides, specifically pyrethroids and neonicotinoids. Unfortunately, the biology of the species and its facility to develop mechanisms of resistance to available pesticides has induced farmers and scientists to develop different, least-toxic, and more effective strategies of control. In a territorial area-wide approach, the use of a classical biological control program in combination with other least-toxic strategies has been given prominent consideration. Following exploratory surveys in the native range, attention has focused on Trissolcus japonicus, a small scelionid egg parasitoid wasp that is able to oviposit and complete its larval development in a single egg of H. halys. A common method for detecting egg parasitoids in the native range involves the placement of so-called 'sentinel' egg masses of the pest in the environment for a short period, which are then returned to the laboratory to determine if any of them are parasitized. Outside of the area of origin, the use of fertile sentinel eggs of the alien species may lead to the further release of the pest species; an alternative is to use sterile sentinel eggs to record the presence of new indigenous egg parasitoids or to detect the dispersal of alien species (in this case, T. japonicus) released in a new environment to control the target insect pest species. This study evaluated the performance of three types of sterile sentinel eggs as a suitable substrate for the oviposition and larval development of the egg parasitoid T. japonicus in a context of combining classical biological control with a Sterile Insect Technique (SIT) approach.

2.
Insects ; 14(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37504667

RESUMO

Red palm weevil (RPW) Rhynchophorus ferrugineus (Olivier 1790) is a highly invasive species originating from Southeast Asia and Melanesia. Over the past 30 years, this alien pest has spread extensively in the Middle East and the Mediterranean basin. Its endophagous larvae feed on various palm species, causing significant damage that leads to the death of palm trees. Controlling RPW infestations is challenging due to their gregarious nature and the lack of detectable early symptoms. Systemic insecticides are effective means of control, but their use in urban areas is prohibited and resistance can develop. Considering alternative options with minimal environmental impact, the Sterile Insect Technique (SIT) has been explored. Previous research has shown that male RPWs irradiated at 80 Gy or higher achieve full sterility. This study aimed to investigate in laboratory conditions whether RPW sterile males (irradiated at 60 and 80 Gy) could compete sexually with non-irradiate males. Laboratory bio-assays under both no-choice and choice conditions assessed sexual performance in terms of number of matings, mating duration and time elapsed until the first mating. The results confirmed that irradiation does not negatively affect the mating performance of sterile males, demonstrating their ability to compete successfully with non-irradiated males in both experimental setups.

3.
Environ Entomol ; 47(3): 609-622, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29534165

RESUMO

A new gall midge, Asphondylia nepetae sp. n. Viggiani (Diptera: Cecidomyiidae), causing flower gall on Clinopodium nepeta (L.) Kuntze (Lamiaceae), is described from Europe. The morphological characteristics of adult, larvae, and pupa are described and illustrated. Molecular approach (by sequencing 28S-D2, ITS2, and COI) confirmed that A. nepetae is a distinct species. The development of the gall is always associated with the presence of the fungus Botryosphaeria dothidea (Moug.: Fr.) Ces. and De Not. (Botryosphaeriales: Botryosphaeriaceae). The new species can complete several generations per year, on the flowers of the same host plant and its adults emerge from late spring to autumn. Pupae overwinter inside peculiar flower galls in a state of quiescence. The impact of the pest is highly variable with a percentage of flowers infested that ranged between 3 and 57.5% in the sampled years. Insect mortality was, at least in part, due to parasitoids that attack the young stages of the midge. Among them, the dominant species was Sigmophora brevicornis (Panzer) (Chalcidoidea: Eulophidae).


Assuntos
Ascomicetos/fisiologia , Herbivoria , Lamiaceae/fisiologia , Nematóceros/classificação , Tumores de Planta , Animais , Complexo IV da Cadeia de Transporte de Elétrons/análise , Cadeia Alimentar , Himenópteros/fisiologia , Proteínas de Insetos/análise , Itália , Lamiaceae/microbiologia , Larva/classificação , Larva/crescimento & desenvolvimento , Larva/parasitologia , Larva/fisiologia , Nematóceros/crescimento & desenvolvimento , Nematóceros/parasitologia , Nematóceros/fisiologia , Filogenia , Pupa/classificação , Pupa/crescimento & desenvolvimento , Pupa/parasitologia , Pupa/fisiologia
4.
Mol Plant Microbe Interact ; 26(10): 1249-56, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23718124

RESUMO

Below ground and above ground plant-insect-microorganism interactions are complex and regulate most of the developmental responses of important crop plants such as tomato. We investigated the influence of root colonization by a nonmycorrhizal plant-growth-promoting fungus on direct and indirect defenses of tomato plant against aphids. The multitrophic system included the plant Solanum lycopersicum ('San Marzano nano'), the root-associated biocontrol fungus Trichoderma longibrachiatum strain MK1, the aphid Macrosiphum euphorbiae (a tomato pest), the aphid parasitoid Aphidius ervi, and the aphid predator Macrolophus pygmaeus. Laboratory bioassays were performed to assess the effect of T. longibrachiatum MK1, interacting with the tomato plant, on quantity and quality of volatile organic compounds (VOC) released by tomato plant, aphid development and reproduction, parasitoid behavior, and predator behavior and development. When compared with the uncolonized controls, plants whose roots were colonized by T. longibrachiatum MK1 showed quantitative differences in the release of specific VOC, better aphid population growth indices, a higher attractiveness toward the aphid parasitoid and the aphid predator, and a quicker development of aphid predator. These findings support the development of novel strategies of integrated control of aphid pests. The species-specific or strain-specific characteristics of these below ground-above ground interactions remain to be assessed.


Assuntos
Afídeos/fisiologia , Himenópteros/fisiologia , Controle Biológico de Vetores , Doenças das Plantas/microbiologia , Solanum lycopersicum/microbiologia , Trichoderma/fisiologia , Animais , Interações Hospedeiro-Patógeno , Solanum lycopersicum/química , Solanum lycopersicum/parasitologia , Doenças das Plantas/parasitologia , Raízes de Plantas/química , Raízes de Plantas/microbiologia , Raízes de Plantas/parasitologia , Especificidade da Espécie , Compostos Orgânicos Voláteis/metabolismo
5.
New Phytol ; 187(4): 1089-1101, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20546139

RESUMO

*An integrated approach has been used to obtain an understanding of the molecular and chemical mechanisms underlying resistance to aphids in cherry-like tomato (Solanum lycopersicum) landraces from the Campania region (southern Italy). The aphid-parasitoid system Macrosiphum euphorbiae-Aphidius ervi was used to describe the levels of resistance against aphids in two tomato accessions (AN5, AN7) exhibiting high yield and quality traits and lacking the tomato Mi gene. *Aphid development and reproduction, flight response by the aphid parasitoid A. ervi, gas chromatography-mass spectrometry headspace analysis of plant volatile organic compounds and transcriptional analysis of aphid responsive genes were performed on selected tomato accessions and on a susceptible commercial variety (M82). *When compared with the cultivated variety, M82, AN5 and AN7 showed a significant reduction of M. euphorbiae fitness, the release of larger amounts of specific volatile organic compounds that are attractive to the aphid parasitoid A. ervi, a constitutively higher level of expression of plant defence genes and differential enhancement of plant indirect resistance induced by aphid feeding. *These results provide new insights on how local selection can offer the possibility of the development of innovative genetic strategies to increase tomato resistance against aphids.


Assuntos
Afídeos , Expressão Gênica , Genes de Plantas , Interações Hospedeiro-Parasita/genética , Doenças das Plantas , Imunidade Vegetal/genética , Solanum lycopersicum/genética , Animais , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Compostos Orgânicos Voláteis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...