Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(28): 72059-72073, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35028837

RESUMO

This paper deals with the effects of piston bowl geometry (hemispherical bowl, troded bowl, and re-entrant bowl) and fuel injection pressure (200 bar, 220 bar, and 240 bar) with hydrogen-diesel/1-pentanol (B20 (80% diesel and 20% pentanol) + 12 lpm of hydrogen) on the emission, combustion, and performance characteristics of a common rail direct injection diesel engine. Re-entrant bowl outperforms hemispherical and troded bowl in terms of brake thermal efficiency (5.67%) and hydrocarbon (8% reduction) with an increase in the fuel injection pressure (240 bar) at part and full load. However, with the increase in the fuel injection pressure in the re-entrant bowl, a slight reduction in nitrogen oxide emissions (2%) is observed. With an increase in injection pressure in the case of re-entrant bowls, NHRR (net heat release rate), peak pressure (in-cylinder), and ROPR (rate of pressure rises) all rise significantly by 3.4%, 4.2%, and 2.3%. It is found that changing the piston shape and fuel injection pressure simultaneously is a potential alternative for improving engine performance and lowering emissions.


Assuntos
Pentanóis , Emissões de Veículos , Hidrogênio , Biocombustíveis , Monóxido de Carbono/análise , Gasolina
2.
Artigo em Inglês | MEDLINE | ID: mdl-36547831

RESUMO

This study focuses on improving heat transfer by converting one of the corners of the duct to a rounded structure. To study the effect of dimpled shaped protrusions and intrusions on the rounded corner triangular duct with a constant radius of curvature by varying relative streamwise distance (z/e) with a constant transverse distance x'/e = 10,14 and 18. Steady-state, turbulent flow heat transfer under thermal boundary conditions is to be analyzed by varying different Reynolds numbers (5600 to 21000). The duct with dimple-shaped protrusions and intrusions is compared with a simple triangular duct. Optimization of relative horizontal distance (z'/e) by keeping constant protrusion to protrusion distance as z/e = 28 and relative transverse distance as x/e = 10, 14, and 18. It was noted that there was a significant loss in friction and a rise in heat transfer. The relationship between friction factor and Nusselt number was formulated using operating and roughness parameters, using the data collected from the numerical investigation. The friction factor increases significantly with roughness elements, and it is maximum for x'/e = 20 at a low Reynolds number. Nusselt number increases with roughness elements, and it is maximum for x'/e = 14 for all Reynolds numbers and all the models. Enhancement of Nusselt number is due to increase of local heat transfer because of local vortex neat heat transfer zone. The maximum outlet temperature is obtained at a low Reynolds number. The maximum temperature of the heated surface is obtained for Rc = 0.67 h and the minimum for Rc = 0.33 h.

3.
Environ Sci Pollut Res Int ; 29(1): 119-132, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33876367

RESUMO

Optimization of fuel injection strategies can maximize the utilization of ternary fuel by addressing the issues concerning fuel consumption, engine performance, and exhaust gas emission. In the midst of the pervasiveness of plant-based biofuel, this paper focused on maximizing the mahua oil biodiesel usage in a diesel engine having a common rail direct injection (CRDI) system without any engine modifications. The crude oil extracted from the seeds of Madhuca longifolia is known in India as mahua butter and has shown impressive fuel properties such as lower viscosity, flashpoint, boiling point, and comparable calorific value to diesel. 1-Pentanol, which has a chain of five carbons and can easily be blended with both diesel and biodiesel, is a promising type of alcohol for the future. In this study, the influence of fuel injection pressure with ternary fuel (diesel + mahua methyl ester + pentanol) on engine characteristics of CRDI diesel engine was analyzed. The fuel injection pressure is varied from 20 to 50 MPa so that ternary fuel can be properly utilized. The high injection pressure of 50 MPa has better combustion characteristics and higher brake thermal efficiency (4.39%) value than other injection pressure values. A better mixture is formed due to well-atomized spray, and as a result, the levels of CO (22.24%), HC (9.49%), and smoke (7.5%) fall with the increase in injection pressure. The usage of ternary fuel raised the NOx emission (12.46%) value and specific fuel consumption (SFC) with a decrease in the BTE (brake thermal efficiency) which attributes to its properties and combustion characteristics.


Assuntos
Gasolina , Pentanóis , Biocombustíveis , Monóxido de Carbono/análise , Ésteres , Emissões de Veículos
4.
Environ Sci Pollut Res Int ; 29(34): 50937-50950, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34296406

RESUMO

Thermal energy conversion and storage plays a vital role in numerous sectors like industrial processing, residential and mass cooking processes, thermal management in buildings, chemical heating, and drying applications. It will also useful in waste heat recovery operations in industrial/thermal power stations. The effect of Al2O3 nanoparticle volume fraction (0%, 2%, and 5%) in a paraffin phase change material (PCM) and heater location (Bottom and Sidewall) in a 2D square thermal energy storage system have been numerically analyzed in this study. Transient thermal analysis has been carried out in ANSYS Fluent R18.1 for 500, 1000, and 3000 s. Laminar flow conditions with an enthalpy porosity model are used to study the solidification and melting behavior of nano-PCM. A Grid independence test has been conducted and selected an optimum number of elements as 115538. The results revealed that the addition of nanoparticles in PCM improves its thermal characteristics. The variation of liquid fraction and temperature profile with time has been recorded, and this is due to Rayleigh-Benard convection. At a given time, the melting rate increases with an increase in nanoparticle concentration up to 2% insertion after that the melting fraction reduces for both bottom wall and sidewall heating. This is mainly due to viscous domination with the increase in physical characteristics like density and viscosity of the fluid. Also, the melting rate in the case of sidewall heating augmented more than the bottom wall heating due to negligible buoyancy effects in former than later. The outcome of this analysis helps to find out the optimum volume concentration of nanoparticles to maximize the thermal energy storage applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA