Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Neurobiol ; 57: 186-191, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31260893

RESUMO

The endoplasmic reticulum (ER) Ca2+ sensor STIM1, best-known for its essential role in triggering influx of extracellular Ca2+ via Ca2+-release-activated channels when ER stores become depleted, unexpectedly also regulates Ca2+ entry through voltage-gated Ca2+ channels. In response to a drop in ER luminal Ca2+ level, this ER membrane-spanning sensor can contact voltage-gated Ca2+ channels in the plasma membrane and thereby inhibit Ca2+ influx through them. This previously unappreciated, interaction between ER Ca2+ level and magnitude of Ca2+ influx via voltage-gated Ca2+ channels may turn out to powerfully impact Ca2+ signaling in excitable cells, including neurotransmitter release, structural and functional postsynaptic plasticity, and transcription factor translocation.


Assuntos
Sinalização do Cálcio , Cálcio , Canais de Cálcio , Membrana Celular , Retículo Endoplasmático
2.
Proc Natl Acad Sci U S A ; 116(27): 13611-13620, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209051

RESUMO

Patterns of postsynaptic activity that induce long-term potentiation of fast excitatory transmission at glutamatergic synapses between hippocampal neurons cause enlargement of the dendritic spine and promote growth in spine endoplasmic reticulum (ER) content. Such postsynaptic activity patterns also impact Ca2+ signaling in the adjoining dendritic shaft, in a zone centered on the spine-shaft junction and extending ∼10-20 µm in either direction along the shaft. Comparing this specialized zone in the shaft with the dendrite in general, plasticity-inducing stimulation of a single spine causes more profound depletion of Ca2+ stores in the ER, a greater degree of interaction between stromal interaction molecule 1 (STIM1) and L-type Ca2+ channels, and thus stronger STIM1 inhibition of these channels. Here we show that the length of this zone along the dendritic axis can be approximately doubled through the neuromodulatory action of ß-adrenergic receptors (ßARs). The mechanism of ßAR enlargement of the zone arises from protein kinase A-mediated enhancement of L-type Ca2+ current, which in turn lowers [Ca2+]ER through ryanodine receptor-dependent Ca2+-induced Ca2+ release and activates STIM1 feedback inhibition of L-type Ca2+ channels. An important function of this dendritic zone is to support crosstalk between spines along its length such that spines neighboring a strongly stimulated spine are enabled to undergo structural plasticity in response to stimulation that would otherwise be subthreshold for spine structural plasticity. This form of crosstalk requires L-type Ca2+ channel current to activate STIM1, and ßAR activity extends the range along the shaft over which such spine-to-spine communication can occur.


Assuntos
Cálcio/metabolismo , Dendritos/fisiologia , Espinhas Dendríticas/fisiologia , Receptor Cross-Talk/fisiologia , Transdução de Sinais , Sinapses/fisiologia , Animais , Canais de Cálcio Tipo L/fisiologia , Retículo Endoplasmático/metabolismo , Feminino , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais/fisiologia , Molécula 1 de Interação Estromal/metabolismo , Potenciais Sinápticos/fisiologia
3.
Mol Biol Cell ; 30(14): 1743-1756, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31091162

RESUMO

In neurons, regulation of activity-dependent transcription by the nuclear factor of activated T-cells (NFAT) depends upon Ca2+ influx through voltage-gated L-type calcium channels (LTCC) and NFAT translocation to the nucleus following its dephosphorylation by the Ca2+-dependent phosphatase calcineurin (CaN). CaN is recruited to the channel by A-kinase anchoring protein (AKAP) 79/150, which binds to the LTCC C-terminus via a modified leucine-zipper (LZ) interaction. Here we sought to gain new insights into how LTCCs and signaling to NFAT are regulated by this LZ interaction. RNA interference-mediated knockdown of endogenous AKAP150 and replacement with human AKAP79 lacking its C-terminal LZ domain resulted in loss of depolarization-stimulated NFAT signaling in rat hippocampal neurons. However, the LZ mutation had little impact on the AKAP-LTCC interaction or LTCC function, as measured by Förster resonance energy transfer, Ca2+ imaging, and electrophysiological recordings. AKAP79 and NFAT coimmunoprecipitated when coexpressed in heterologous cells, and the LZ mutation disrupted this association. Critically, measurements of NFAT mobility in neurons employing fluorescence recovery after photobleaching and fluorescence correlation spectroscopy provided further evidence for an AKAP79 LZ interaction with NFAT. These findings suggest that the AKAP79/150 LZ motif functions to recruit NFAT to the LTCC signaling complex to promote its activation by AKAP-anchored calcineurin.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Canais de Cálcio Tipo L/metabolismo , Núcleo Celular/metabolismo , Fatores de Transcrição NFATC/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Proteínas de Ancoragem à Quinase A/química , Motivos de Aminoácidos , Animais , Calcineurina/metabolismo , Sinalização do Cálcio , Linhagem Celular , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Espinhas Dendríticas/metabolismo , Hipocampo/citologia , Modelos Biológicos , Ligação Proteica , Transporte Proteico , Ratos Sprague-Dawley , Transcrição Gênica
4.
Cell Rep ; 26(13): 3537-3550.e4, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917310

RESUMO

Long-term information storage in the brain requires continual modification of the neuronal transcriptome. Synaptic inputs located hundreds of micrometers from the nucleus can regulate gene transcription, requiring high-fidelity, long-range signaling from synapses in dendrites to the nucleus in the cell soma. Here, we describe a synapse-to-nucleus signaling mechanism for the activity-dependent transcription factor NFAT. NMDA receptors activated on distal dendrites were found to initiate L-type Ca2+ channel (LTCC) spikes that quickly propagated the length of the dendrite to the soma. Surprisingly, LTCC propagation did not require voltage-gated Na+ channels or back-propagating action potentials. NFAT nuclear recruitment and transcriptional activation only occurred when LTCC spikes invaded the somatic compartment, and the degree of NFAT activation correlated with the number of somatic LTCC Ca2+ spikes. Together, these data support a model for synapse to nucleus communication where NFAT integrates somatic LTCC Ca2+ spikes to alter transcription during periods of heightened neuronal activity.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Núcleo Celular/metabolismo , Fatores de Transcrição NFATC/metabolismo , Sinapses/metabolismo , Potenciais de Ação , Animais , Comunicação Celular , Células Cultivadas , Feminino , Hipocampo/citologia , Humanos , Masculino , Modelos Neurológicos , Ratos , Ratos Sprague-Dawley , Potenciais Sinápticos
5.
J Neurosci ; 38(43): 9215-9227, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30201773

RESUMO

Stac protein (named for its SH3- and cysteine-rich domains) was first identified in brain 20 years ago and is currently known to have three isoforms. Stac2, Stac1, and Stac3 transcripts are found at high, modest, and very low levels, respectively, in the cerebellum and forebrain, but their neuronal functions have been little investigated. Here, we tested the effects of Stac proteins on neuronal, high-voltage-activated Ca2+ channels. Overexpression of the three Stac isoforms eliminated Ca2+-dependent inactivation (CDI) of l-type current in rat neonatal hippocampal neurons (sex unknown), but not CDI of non-l-type current. Using heterologous expression in tsA201 cells (together with ß and α2-δ1 auxiliary subunits), we found that CDI for CaV1.2 and CaV1.3 (the predominant, neuronal l-type Ca2+ channels) was suppressed by all three Stac isoforms, whereas CDI for the P/Q channel, CaV2.1, was not. For CaV1.2, the inhibition of CDI by the Stac proteins appeared to involve their direct interaction with the channel's C terminus. Within the Stac proteins, a weakly conserved segment containing ∼100 residues and linking the structurally conserved PKC C1 and SH3_1 domains was sufficient to fully suppress CDI. The presence of CDI for l-type current in control neonatal neurons raised the possibility that endogenous Stac levels are low in these neurons and Western blotting indicated that the expression of Stac2 was substantially increased in adult forebrain and cerebellum compared with neonate. Together, our results indicate that one likely function of neuronal Stac proteins is to tune Ca2+ entry via neuronal l-type channels.SIGNIFICANCE STATEMENT Stac protein, first identified 20 years ago in brain, has recently been found to be essential for proper trafficking and function of the skeletal muscle l-type Ca2+ channel and is the site of mutations causing a severe, inherited human myopathy. In neurons, however, functions for Stac protein have remained unexplored. Here, we report that one likely function of neuronal Stac proteins is tuning Ca2+ entry via l-type, but not that via non-l-type, Ca2+ channels. Moreover, there is a large postnatal increase in protein levels of the major neuronal isoform (Stac2) in forebrain and cerebellum, which could provide developmental regulation of l-type channel Ca2+ signaling in these brain regions.


Assuntos
Canais de Cálcio Tipo L/biossíntese , Sinalização do Cálcio/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Neurônios/metabolismo , Animais , Animais Recém-Nascidos , Canais de Cálcio Tipo L/genética , Células Cultivadas , Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Prosencéfalo/crescimento & desenvolvimento , Prosencéfalo/metabolismo , Ratos , Ratos Sprague-Dawley
6.
Cell Rep ; 19(2): 321-334, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28402855

RESUMO

Potentiation of synaptic strength relies on postsynaptic Ca2+ signals, modification of dendritic spine structure, and changes in gene expression. One Ca2+ signaling pathway supporting these processes routes through L-type Ca2+ channels (LTCC), whose activity is subject to tuning by multiple mechanisms. Here, we show in hippocampal neurons that LTCC inhibition by the endoplasmic reticulum (ER) Ca2+ sensor, stromal interaction molecule 1 (STIM1), is engaged by the neurotransmitter glutamate, resulting in regulation of spine ER structure and nuclear signaling by the NFATc3 transcription factor. In this mechanism, depolarization by glutamate activates LTCC Ca2+ influx, releases Ca2+ from the ER, and consequently drives STIM1 aggregation and an inhibitory interaction with LTCCs that increases spine ER content but decreases NFATc3 nuclear translocation. These findings of negative feedback control of LTCC signaling by STIM1 reveal interplay between Ca2+ influx and release from stores that controls both postsynaptic structural plasticity and downstream nuclear signaling.


Assuntos
Canais de Cálcio Tipo L/genética , Sinalização do Cálcio/genética , Fatores de Transcrição NFATC/genética , Molécula 1 de Interação Estromal/genética , Animais , Canais de Cálcio Tipo L/biossíntese , Espinhas Dendríticas/genética , Espinhas Dendríticas/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Humanos , Fatores de Transcrição NFATC/metabolismo , Neurônios/metabolismo , Cultura Primária de Células , Agregados Proteicos/genética , Ratos , Receptores de N-Metil-D-Aspartato/biossíntese , Receptores de N-Metil-D-Aspartato/genética , Molécula 1 de Interação Estromal/biossíntese
7.
Eur J Pharmacol ; 784: 1-14, 2016 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-27158117

RESUMO

Recent understanding of the systems that mediate complex disease states, has generated a search for molecules that simultaneously modulate more than one component of a pathologic pathway. Chronic pain syndromes are etiologically connected to functional changes (sensitization) in both peripheral sensory neurons and in the central nervous system (CNS). These functional changes involve modifications of a significant number of components of signal generating, signal transducing and signal propagating pathways. Our analysis of disease-related changes which take place in sensory neurons during sensitization led to the design of a molecule that would simultaneously inhibit peripheral NMDA receptors and voltage sensitive sodium channels. In the current report, we detail the selectivity of N,N-(diphenyl)-4-ureido-5,7-dichloro-2-carboxy-quinoline (DCUKA) for action at NMDA receptors composed of different subunit combinations and voltage sensitive sodium channels having different α subunits. We show that DCUKA is restricted to the periphery after oral administration, and that circulating blood levels are compatible with its necessary concentrations for effects at the peripheral cognate receptors/channels that were assayed in vitro. Our results demonstrate that DCUKA, at concentrations circulating in the blood after oral administration, can modulate systems which are upregulated during peripheral sensitization, and are important for generating and conducting pain information to the CNS. Furthermore, we demonstrate that DCUKA ameliorates the hyperalgesia of chronic pain without affecting normal pain responses in neuropathic and inflammation-induced chronic pain models.


Assuntos
Terapia de Alvo Molecular , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Compostos de Fenilureia/química , Compostos de Fenilureia/farmacologia , Quinolinas/química , Quinolinas/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Anti-Inflamatórios/sangue , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células CHO , Doença Crônica , Cricetinae , Cricetulus , Células HEK293 , Humanos , Inflamação/tratamento farmacológico , Masculino , Compostos de Fenilureia/sangue , Compostos de Fenilureia/uso terapêutico , Isoformas de Proteínas/metabolismo , Quinolinas/sangue , Quinolinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/sangue , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/uso terapêutico
8.
Cell Rep ; 7(5): 1410-1416, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24835998

RESUMO

Within neurons, Ca2+-dependent inactivation (CDI) of voltage-gated L-type Ca2+ channels shapes cytoplasmic Ca2+ signals. CDI is initiated by Ca2+ binding to channel-associated calmodulin and subsequent Ca2+/calmodulin activation of the Ca2+-dependent phosphatase, calcineurin (CaN), which is targeted to L channels by the A-kinase-anchoring protein AKAP79/150. Here, we report that CDI of neuronal L channels was abolished by inhibition of PKA activity or PKA anchoring to AKAP79/150 and that CDI was also suppressed by stimulation of PKA activity. Although CDI was reduced by positive or negative manipulation of PKA, interference with PKA anchoring or activity lowered Ca2+ current density whereas stimulation of PKA activity elevated it. In contrast, inhibition of CaN reduced CDI but had no effect on current density. These results suggest a model wherein PKA-dependent phosphorylation enhances neuronal L current, thereby priming channels to undergo CDI, and Ca2+/calmodulin-activated CaN actuates CDI by reversing PKA-mediated enhancement of channel activity.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Calcineurina/metabolismo , Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Neurônios/metabolismo , Potenciais de Ação , Animais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Neurônios/fisiologia , Ligação Proteica , Ratos
9.
Cell Rep ; 7(5): 1577-1588, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24835999

RESUMO

L-type voltage-gated Ca2+ channels (LTCC) couple neuronal excitation to gene transcription. LTCC activity is elevated by the cyclic AMP (cAMP)-dependent protein kinase (PKA) and depressed by the Ca2+-dependent phosphatase calcineurin (CaN), and both enzymes are localized to the channel by A-kinase anchoring protein 79/150 (AKAP79/150). AKAP79/150 anchoring of CaN also promotes LTCC activation of transcription through dephosphorylation of the nuclear factor of activated T cells (NFAT). We report here that the basal activity of AKAP79/150-anchored PKA maintains neuronal LTCC coupling to CaN-NFAT signaling by preserving LTCC phosphorylation in opposition to anchored CaN. Genetic disruption of AKAP-PKA anchoring promoted redistribution of the kinase out of postsynaptic dendritic spines, profound decreases in LTCC phosphorylation and Ca2+ influx, and impaired NFAT movement to the nucleus and activation of transcription. Thus, LTCC-NFAT transcriptional signaling in neurons requires precise organization and balancing of PKA and CaN activities in the channel nanoenvironment, which is only made possible by AKAP79/150 scaffolding.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Canais de Cálcio Tipo L/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Espinhas Dendríticas/metabolismo , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais , Ativação Transcricional , Animais , Calcineurina/metabolismo , Canais de Cálcio Tipo L/genética , Células Cultivadas , Espinhas Dendríticas/fisiologia , Células HEK293 , Humanos , Camundongos , Ligação Proteica , Ratos
10.
Neural Plast ; 2013: 654257, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24224102

RESUMO

Over the last twenty years of research on cellular mechanisms of pain hypersensitivity, long-term potentiation (LTP) of synaptic transmission in the spinal cord dorsal horn (DH) has emerged as an important contributor to pain pathology. Mechanisms that underlie LTP of spinal DH neurons include changes in the numbers, activity, and properties of ionotropic glutamate receptors (AMPA and NMDA receptors) and of voltage-gated Ca²âº channels. Here, we review the roles and mechanisms of these channels in the induction and expression of spinal DH LTP, and we present this within the framework of the anatomical organization and synaptic circuitry of the spinal DH. Moreover, we compare synaptic plasticity in the spinal DH with classical LTP described for hippocampal synapses.


Assuntos
Canais de Cálcio/fisiologia , Hiperalgesia/fisiopatologia , Potenciação de Longa Duração/fisiologia , Células do Corno Posterior/fisiologia , Receptores Ionotrópicos de Glutamato/fisiologia , Sinapses/fisiologia , Animais , Medula Espinal/fisiologia
11.
J Neurosci ; 32(44): 15328-37, 2012 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-23115171

RESUMO

Excitation-driven entry of Ca(2+) through L-type voltage-gated Ca(2+) channels controls gene expression in neurons and a variety of fundamental activities in other kinds of excitable cells. The probability of opening of Ca(V)1.2 L-type channels is subject to pronounced enhancement by cAMP-dependent protein kinase (PKA), which is scaffolded to Ca(V)1.2 channels by A-kinase anchoring proteins (AKAPs). Ca(V)1.2 channels also undergo negative autoregulation via Ca(2+)-dependent inactivation (CDI), which strongly limits Ca(2+) entry. An abundance of evidence indicates that CDI relies upon binding of Ca(2+)/calmodulin (CaM) to an isoleucine-glutamine motif in the carboxy tail of Ca(V)1.2 L-type channels, a molecular mechanism seemingly unrelated to phosphorylation-mediated channel enhancement. But our work reveals, in cultured hippocampal neurons and a heterologous expression system, that the Ca(2+)/CaM-activated phosphatase calcineurin (CaN) is scaffolded to Ca(V)1.2 channels by the neuronal anchoring protein AKAP79/150, and that overexpression of an AKAP79/150 mutant incapable of binding CaN (ΔPIX; CaN-binding PXIXIT motif deleted) impedes CDI. Interventions that suppress CaN activity-mutation in its catalytic site, antagonism with cyclosporine A or FK506, or intracellular perfusion with a peptide mimicking the sequence of the phosphatase's autoinhibitory domain-interfere with normal CDI. In cultured hippocampal neurons from a ΔPIX knock-in mouse, CDI is absent. Results of experiments with the adenylyl cyclase stimulator forskolin and with the PKA inhibitor PKI suggest that Ca(2+)/CaM-activated CaN promotes CDI by reversing channel enhancement effectuated by kinases such as PKA. Hence, our investigation of AKAP79/150-anchored CaN reconciles the CaM-based model of CDI with an earlier, seemingly contradictory model based on dephosphorylation signaling.


Assuntos
Calcineurina/fisiologia , Canais de Cálcio Tipo L/fisiologia , Sinalização do Cálcio/fisiologia , Cálcio/fisiologia , Neurônios/fisiologia , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Animais , Animais Geneticamente Modificados , Bário/farmacologia , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Calmodulina/metabolismo , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Transferência Ressonante de Energia de Fluorescência , Fluorometria , Hipocampo/citologia , Hipocampo/fisiologia , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Técnicas de Patch-Clamp , Células Piramidais/fisiologia , Transfecção
12.
Neuron ; 55(2): 261-75, 2007 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-17640527

RESUMO

Neuronal L-type calcium channels contribute to dendritic excitability and activity-dependent changes in gene expression that influence synaptic strength. Phosphorylation-mediated enhancement of L-type channels containing the CaV1.2 pore-forming subunit is promoted by A-kinase anchoring proteins (AKAPs) that target cAMP-dependent protein kinase (PKA) to the channel. Although PKA increases L-type channel activity in dendrites and dendritic spines, the mechanism of enhancement in neurons remains poorly understood. Here, we show that CaV1.2 interacts directly with AKAP79/150, which binds both PKA and the Ca2+/calmodulin-activated phosphatase calcineurin (CaN). Cotargeting of PKA and CaN by AKAP79/150 confers bidirectional regulation of L-type current amplitude in transfected HEK293 cells and hippocampal neurons. However, anchored CaN dominantly suppresses PKA enhancement of the channel. Additionally, activation of the transcription factor NFATc4 via local Ca2+ influx through L-type channels requires AKAP79/150, suggesting that this signaling complex promotes neuronal L channel signaling to the nucleus through NFATc4.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Calcineurina/metabolismo , Canais de Cálcio Tipo L/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Proteínas de Ancoragem à Quinase A , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hipocampo/citologia , Humanos , Zíper de Leucina/fisiologia , Fatores de Transcrição NFATC/metabolismo , Neurônios/citologia , Membrana Nuclear/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
13.
Nat Neurosci ; 8(4): 435-42, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15768038

RESUMO

Voltage-gated Ca(2+) channels (VGCCs) are important in regulating a variety of cellular functions in neurons. It remains poorly understood how VGCCs with different functions are sorted within neurons. Here we show that the t-complex testis-expressed 1 (tctex1) protein, a light-chain subunit of the dynein motor complex, interacts directly and selectively with N- and P/Q-type Ca(2+) channels, but not L-type Ca(2+) channels. The interaction is insensitive to Ca(2+). Overexpression in hippocampal neurons of a channel fragment containing the binding domain for tctex1 significantly decreases the surface expression of endogenous N- and P/Q-type Ca(2+) channels but not L-type Ca(2+) channels, as determined by immunostaining. Furthermore, disruption of the tctex1-Ca(2+) channel interaction significantly reduces the Ca(2+) current density in hippocampal neurons. These results underscore the importance of the specific tctex1-channel interaction in determining sorting and trafficking of neuronal Ca(2+) channels with different functionalities.


Assuntos
Canais de Cálcio/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Animais , Western Blotting/métodos , Cálcio/farmacologia , Canais de Cálcio/química , Canais de Cálcio/classificação , Carbodi-Imidas/metabolismo , Carbodi-Imidas/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Dineínas , Capacitância Elétrica , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Imuno-Histoquímica/métodos , Imunoprecipitação/métodos , Ativação do Canal Iônico , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Dados de Sequência Molecular , Mutagênese/fisiologia , Técnicas de Patch-Clamp/métodos , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo , Transfecção/métodos , Técnicas do Sistema de Duplo-Híbrido , Região do Complexo-t do Genoma
14.
J Neurosci ; 23(5): 1593-604, 2003 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-12629163

RESUMO

Cluster I neurons of the suprachiasmatic nucleus (SCN), which are thought to be pacemakers supporting circadian activity, fire spontaneous action potentials that are followed by a monophasic afterhyperpolarization (AHP). Using a brain slice preparation, we have found that the AHP has a shorter duration in cells firing at higher frequency, consistent with circadian modulation of the AHP. The AHP is supported by at least three subtypes of K(Ca) channels, including apamin-sensitive channels, iberiotoxin-sensitive channels, and channels that are insensitive to both of these antagonists. The latter K(Ca) channel subtype is involved in rate-dependent regulation of the AHP. Voltage-clamped, whole-cell Ca(2+) channel currents recorded from SCN neurons were dissected pharmacologically, revealing all of the major high-voltage activated subtypes: L-, N-, P/Q-, and R-type Ca(2+) channel currents. Application of Ca(2+) channel antagonists to spontaneously firing neurons indicated that predominantly L- and R-type currents trigger the AHP. Our findings suggest that apamin- and iberiotoxin-insensitive K(Ca) channels are subject to diurnal modulation by the circadian clock and that this modulation either directly or indirectly leads to the expression of a circadian rhythm in spiking frequency.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/fisiologia , Núcleo Supraquiasmático/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Apamina/farmacologia , Relógios Biológicos/fisiologia , Cádmio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Ritmo Circadiano/fisiologia , Antagonistas GABAérgicos/farmacologia , Técnicas In Vitro , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Canais de Potássio Cálcio-Ativados/antagonistas & inibidores , Canais de Potássio Cálcio-Ativados/metabolismo , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Núcleo Supraquiasmático/citologia , Núcleo Supraquiasmático/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
15.
Biophys J ; 84(3): 1709-19, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12609873

RESUMO

Voltage-gated L-type Ca(2+) channels from cardiac (alpha(1C)) and skeletal (alpha(1S)) muscle differ from one another in ion selectivity and permeation properties, including unitary conductance. In 110 mM Ba(2+), unitary conductance of alpha(1S) is approximately half that of alpha(1C). As a step toward understanding the mechanism of rapid ion flux through these highly selective ion channels, we used chimeras constructed between alpha(1C) and alpha(1S) to identify structural features responsible for the difference in conductance. Combined replacement of the four pore-lining P-loops in alpha(1C) with P-loops from alpha(1S) reduced unitary conductance to a value intermediate between those of the two parent channels. Combined replacement of four larger regions that include sequences flanking the P-loops (S5 and S6 segments along with the P-loop-containing linker between these segments (S5-6)) conferred alpha(1S)-like conductance on alpha(1C). Likewise, substitution of the four S5-6 regions of alpha(1C) into alpha(1S) conferred alpha(1C)-like conductance on alpha(1S). These results indicate that, comparing alpha(1C) with alpha(1S), the differences in structure that are responsible for the difference in ion conduction are housed within the S5-6 regions. Moreover, the pattern of unitary conductance values obtained for chimeras in which a single P-loop or single S5-6 region was replaced suggest a concerted action of pore-lining regions in the control of ion conduction.


Assuntos
Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/fisiologia , Sequência de Aminoácidos , Animais , Canais de Cálcio Tipo L/classificação , Células Cultivadas , Condutividade Elétrica , Coração/fisiologia , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Dados de Sequência Molecular , Músculo Esquelético/química , Músculo Esquelético/fisiologia , Miocárdio/química , Oócitos/química , Oócitos/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sensibilidade e Especificidade , Relação Estrutura-Atividade , Xenopus laevis/genética , Xenopus laevis/metabolismo
16.
Annu Rev Physiol ; 65: 133-59, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12471162

RESUMO

Recent advances-both experimental and theoretical-provide a tentative image of the structures in Ca channels that make them exceptionally selective. The image is very different from K channels, which obtain high selectivity with a rigid pore that tightly fits K(+) ions and is lined by carbonyl oxygens of the polypeptide backbone. Ca channels rely on four glutamate residues (the EEEE locus), whose carboxyl side chains likely reach into the pore lumen to interact with passing Ca(2+) ions. The structure is thought to be flexible, tightly binding a single Ca(2+) ion in order to block Na(+) flux but rearranging to interact with multiple Ca(2+) ions to allow Ca(2+) flux. The four glutamates are not equivalent, a fact that seems important for Ca(2+) permeation. This review describes the experimental evidence that leads to these conclusions and the attempts by theorists to explain the combination of high selectivity and high flux that characterizes Ca channels.


Assuntos
Canais de Cálcio/química , Canais de Cálcio/metabolismo , Ativação do Canal Iônico/fisiologia , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Humanos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...