Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 23(3): 343-353, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-37913500

RESUMO

Solid tumor antibody-drug conjugates (ADC) have experienced more clinical success in the last 5 years than the previous 18-year span since the first ADC approval in 2000. While recent advances in protein engineering, linker design, and payload variations have played a role in this success, high expression and readily internalized targets have also been crucial to solid tumor therapy. However, these factors are also paradoxically connected to poor tissue penetration and lower efficacy. Previous work shows that potent ADCs can benefit from slower internalization under subsaturating doses to improve tissue penetration and increase tumor response. In contrast, faster internalization is predicted to increase efficacy under higher, tumor saturating doses. In this work, the intracellular delivery of SN-38 conjugated to an anti-carcinoembryonic antigen (anti-CEA) antibody (Ab) is increased by coadministering a noncompeting (cross-linking) anti-CEA Ab to improve efficacy in a colorectal carcinoma animal model. The SN-38 payload enables broad tumor saturation with clinically-tolerable doses, and under these saturating conditions, using a second CEA receptor cross-linking Ab yields faster internalization, which increases tumor killing efficacy. Our spheroid results show indirect bystander killing can also occur, but the more efficient direct cell killing from targeted intracellular payload release drives a greater tumor response. These results provide a strategy to increase therapeutic effectiveness with improved intracellular delivery under tumor saturating doses with the potential to expand the ADC target repertoire.


Assuntos
Antineoplásicos , Imunoconjugados , Animais , Antígeno Carcinoembrionário , Irinotecano , Linhagem Celular Tumoral , Anticorpos Monoclonais
2.
Bioorg Med Chem ; 16(13): 6501-8, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18524602

RESUMO

This study describes the antibacterial properties of synthetically produced mixed aryl-alkyl disulfide compounds as a means to control the growth of Staphylococcus aureus and Bacillus anthracis. Some of these compounds exerted strong in vitro bioactivity. Our results indicate that among the 12 different aryl substituents examined, nitrophenyl derivatives provide the strongest antibiotic activities. This may be the result of electronic activation of the arylthio moiety as a leaving group for nucleophilic attack on the disulfide bond. Small alkyl residues on the other sulfur provide the best activity as well, which for different bacteria appears to be somewhat dependent on the nature of the alkyl moiety. The mechanism of action of these lipophilic disulfides is likely similar to that of previously reported N-thiolated beta-lactams, which have been shown to produce alkyl-CoA disulfides through a thiol-disulfide exchange within the cytoplasm, ultimately inhibiting type II fatty acid synthesis. However, the mixed alkyl-CoA disulfides themselves show no antibacterial activity, presumably due to the inability of the highly polar compounds to cross the bacterial cell membrane. These structurally simple disulfides have been found to inhibit beta-ketoacyl-acyl carrier protein synthase III, or FabH, a key enzyme in type II fatty acid biosynthesis, and thus may serve as new leads to the development of effective antibacterials for MRSA and anthrax infections.


Assuntos
Bacillus anthracis/citologia , Bacillus anthracis/efeitos dos fármacos , Dissulfetos/química , Dissulfetos/farmacologia , Resistência a Meticilina/efeitos dos fármacos , Staphylococcus aureus/citologia , Staphylococcus aureus/efeitos dos fármacos , Alquilação , Dissulfetos/síntese química , Metilação , Viabilidade Microbiana/efeitos dos fármacos , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...