Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Dent ; 9(3): 428-432, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26430375

RESUMO

OBJECTIVE: A three-dimensional (3D) finite element analysis (FEA) on the stress distribution of endodontically treated teeth with titanium alloy post and carbon fiber post with different alveolar bone height. MATERIALS AND METHODS: The 3D model was fabricated using software to represent an endodontically treated mandibular second premolar with post and restored with a full ceramic crown restoration, which was then analyzed using FEA using FEA ANSYS Workbench V13.0 (ANSYS Inc., Canonsburg, Pennsylvania, U.S.A) software. RESULTS: The FEA showed the maximum stresses of 137.43 Mpa in dentin with alveolar bone height of 4 mm when the titanium post was used, 138.48 Mpa when carbon fiber post was used as compared to 105.91 Mpa in the model with alveolar bone height of 2 mm from the cement enamel junction (CEJ) when the titanium post was used and 107.37 Mpa when the carbon fiber post was used. CONCLUSIONS: Stress was observed more in alveolar bone height level of 4 mm from CEJ than 2 mm from CEJ. Stresses in the dentin were almost similar when the carbon fiber post was compared to titanium post. However, stresses in the post and the cement were much higher when titanium post was used as compared to carbon fiber post.

2.
J Conserv Dent ; 18(3): 196-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26069403

RESUMO

AIMS: Adequate bone support is an essential factor to avoid undue stress to the tooth. This is important when the tooth is endodontically treated and requires a post. The purpose of the present finite element (FE) analysis study was to evaluate the stress distribution of post on endodontically treated tooth with reduced alveolar bone height support and after bone augmentation. The null hypothesis was that there is no difference between the stress distribution of post on endodontically treated teeth with reduced alveolar bone height support and after alveolar bone height augmented using bone graft substitute. MATERIALS AND METHODS: The three-dimensional model was fabricated using ANSYS Workbench version 13.0 software to represent an endodontically treated mandibular second premolar restored with a full ceramic crown restoration and was analyzed using FE analysis. A load of 300N at an angle of 60° to the vertical was applied to the triangular ridge of the buccal cusp in a buccolingual plane. The stresses on the tooth with normal alveolar bone height, reduced alveolar bone height, and after bone augmentation because of reduced bone height were calculated using von misses stresses. RESULTS: A maximum stress value of 136.04 MPa was observed in dentin with an alveolar bone height of 4 mm from the cemento-enamel junction (CEJ). However, after 2 mm of alveolar bone augmentation, the stress value was 104.32 MPa, which was comparable to the stress value of 105.56 observed with the normal bone height of 2 mm from the CEJ. CONCLUSION: Similar values of stresses were observed in teeth with normal and augmented bone height. Increased stresses were observed with alveolar bone loss of 4 mm from the CEJ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...