Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3517, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664406

RESUMO

The oxidative potential (OP) of particulate matter (PM) is a major driver of PM-associated health effects. In India, the emission sources defining PM-OP, and their local/regional nature, are yet to be established. Here, to address this gap we determine the geographical origin, sources of PM, and its OP at five Indo-Gangetic Plain sites inside and outside Delhi. Our findings reveal that although uniformly high PM concentrations are recorded across the entire region, local emission sources and formation processes dominate PM pollution. Specifically, ammonium chloride, and organic aerosols (OA) from traffic exhaust, residential heating, and oxidation of unsaturated vapors from fossil fuels are the dominant PM sources inside Delhi. Ammonium sulfate and nitrate, and secondary OA from biomass burning vapors, are produced outside Delhi. Nevertheless, PM-OP is overwhelmingly driven by OA from incomplete combustion of biomass and fossil fuels, including traffic. These findings suggest that addressing local inefficient combustion processes can effectively mitigate PM health exposure in northern India.

2.
J Environ Manage ; 317: 115456, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35751260

RESUMO

Polycyclic Aromatic Hydrocarbons (PAHs) and Nitro-PAHs were collected over a year at a traffic dominated site in Agra, to determine the dominant partitioning mechanism. During the entire sampling period, total PAHs and Nitro-PAHs were 3465 ± 3802 and 26.1 ± 25.9 ng m-3 respectively. The gas-particle partitioning behavior of PAHs was studied by applying the Pankow model, Absorption model, and Dual model. Amongst all the partitioning models, the Dual model fits well and indicates that the partitioning of PAHs at the traffic site in Agra depends on both the physical adsorption of PAHs on the Total Suspended Particulate (TSP) surface and absorption of PAHs into the organic layer present on the TSP surface. Pankow model indicates that PAHs are emitted from the source close to the sampling point and due to this PAHs do not get enough time to get partitioned in between both the phases. Incremental lifetime Cancer Risk (ILCR) shows that adults and children are more prone to cancer risk in comparison to infants for both PAHs and Nitro-PAHs. Cancer risk by inhalation was minimum in comparison to both ingestion and dermal exposure. Nitro-PAHs in the particulate phase were high enough to exceed the minimum permissible limit (10-6) of causing cancer by ingestion and dermal exposure.


Assuntos
Poluentes Atmosféricos , Neoplasias , Hidrocarbonetos Policíclicos Aromáticos , Adulto , Poluentes Atmosféricos/análise , Criança , Carvão Mineral , Monitoramento Ambiental , Humanos , Material Particulado/análise , Medição de Risco
3.
Sci Total Environ ; 794: 148589, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34214816

RESUMO

It is well established that light-absorbing organic aerosols (commonly known as brown carbon, BrC) impact climate. However, uncertainties remain as their contributions to absorption at different wavelengths are often ignored in climate models. Further, BrC exhibits differences in absorption at different wavelengths due to the variable composition including varying sources and meteorological conditions. However, diurnal variability in the spectral characteristics of water-soluble BrC (hereafter BrC) is not yet reported. This study presents unique measurement hitherto lacking in the literature. Online measurements of BrC were performed using an assembled system including a particle-into-liquid sampler, portable UV-Visible spectrophotometer with liquid waveguid capillary cell, and total carbon analyzer (PILS-LWCC-TOC). This system measured the absorption of ambient aerosol extracts at the wavelengths ranging from 300 to 600 nm with 2 min integration time and water-soluble organic carbon (WSOC) with 4 min integration time over a polluted megacity, New Delhi. Black carbon, carbon monoxide (CO), nitrogen oxides (NOx), and the chemical composition of non-refractory submicron aerosols were also measured in parallel. Diurnal variability in absorption coefficient (0.05 to 65 Mm-1), mass absorption efficiency (0.01 to 3.4 m-2 gC-1) at 365 nm, and absorption angstrom exponent (AAE) of BrC for different wavelength range (AAE300-400: 4.2-5.8; AAE400-600: 5.5-8.0; and AAE300-600: 5.3-7.3) is discussed. BrC chromophores absorbing at any wavelength showed minimum absorption during afternoon hours, suggesting the effects of boundary layer expansion and their photo-sensitive/volatile nature. On certain days, a considerable presence of BrC absorbing at 490 nm was observed during nighttime that disappears during the daytime. It appeared to be associated with secondary BrC. Observations also infer that BrC species emitted from the biomass and coal burning are more absorbing among all sources. A fraction of BrC is likely associated with trash burning, as inferred from the spectral characteristics of Factor-3 from the PMF analysis of BrC spectra. Such studies are essential in understanding the BrC characteristics and their further utilization in climate models.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Índia , Material Particulado/análise , Água
4.
Sci Total Environ ; 770: 145324, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33736388

RESUMO

National Capital Region (NCR) encompassing New Delhi is one of the most polluted urban metropolitan areas in the world. Real-time chemical characterization of fine particulate matter (PM1 and PM2.5) was carried out using three aerosol mass spectrometers, two aethalometers, and one single particle soot photometer (SP2) at two sites in Delhi (urban) and one site located ~40 km downwind of Delhi, during January-March 2018. The campaign mean PM2.5 (NR-PM2.5 + BC) concentrations at the two urban sites were 153.8 ± 109.4 µg.m-3 and 127.8 ± 83.2 µg.m-3, respectively, whereas PM1 (NR-PM1 + BC) was 72.3 ± 44.0 µg.m-3 at the downwind site. PM2.5 particles were composed mostly of organics (43-44)% followed by chloride (14-17)%, ammonium (9-11)%, nitrate (9%), sulfate (8-10)%, and black carbon (11-16)%, whereas PM1 particles were composed of 47% organics, 13% sulfate as well as ammonium, 11% nitrate as well as chloride, and 5% black carbon. Organic aerosol (OA) source apportionment was done using positive matrix factorization (PMF), solved using an advanced multi-linear engine (ME-2) model. Highly mass-resolved OA mass spectra at one urban and downwind site were factorized into three primary organic aerosol (POA) factors including one traffic-related and two solid-fuel combustion (SFC), and three oxidized OA (OOA) factors. Whereas unit mass resolution OA at the other urban site was factorized into two POA factors related to traffic and SFC, and one OOA factor. OOA constituted a majority of the total OA mass (45-55)% with maximum contribution during afternoon hours ~(70-80)%. Significant differences in the absolute OOA concentration between the two urban sites indicated the influence of local emissions on the oxidized OA formation. Similar PM chemical composition, diurnal and temporal variations at the three sites suggest similar type of sources affecting the particulate pollution in Delhi and adjoining cities, but variability in mass concentration suggest more local influence than regional.

5.
Environ Sci Pollut Res Int ; 27(26): 33339-33350, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32533475

RESUMO

Light-absorbing organic aerosol (brown carbon (BrC)) can significantly affect Earth's radiation budget and hydrological cycle. Biomass burning (BB) is among the major sources of atmospheric BrC. In this study, day/night pair (10-h integrated) of ambient PM2.5 were sampled every day before (defined as T1, n = 21), during (T2, n = 36), and after (T3, n = 8) a large-scale paddy-residue burning during October-November over Patiala (30.2° N, 76.3° E, 250 m amsl), a site located in the northwestern Indo-Gangetic Plain (IGP). PM2.5 concentration varied from ~ 90 to 500 µg m-3 (average ± 1σ standard deviation 230 ± 114) with the average values of 154 ± 57, 271 ± 122, and 156 ± 18 µg m-3 during T1, T2, and T3 periods, respectively, indicating the influence of BB emissions on ambient air quality. The absorption coefficient of BrC (babs) is calculated from the high-resolution absorption spectra of water-soluble and methanol-soluble organic carbon measured at 300 to 700 nm, and that at 365 nm (babs_365) is used as a general measure of BrC. The babs_365_Water and babs_365_Methanol ranged ~ 2 to 112 Mm-1 (avg 37 ± 27) and ~ 3 to 457 Mm-1 (avg 121 ± 108), respectively, suggesting a considerable presence of water-insoluble BrC. Contrasting differences were also observed in the daytime and nighttime values of babs_365_Water and babs_365_Methanol. Further, the levoglucosan showed a strong correlation with K+ (slope = 0.89 ± 0.06, R = 0.92) during the T2 period. We propose that this slope (~ 0.9) can be used as a typical characteristics of the emissions from paddy-residue burning over the IGP. Absorption Ångström exponent (AAE) showed a clear day/night variability during the T2 period, and lower AAEMethanol compared to AAEWater throughout the sampling period. Further at 365 nm, average relative atmospheric radiative forcing (RRF) for BrCWater is estimated to be ~ 17%, whereas that of BrCMethanol ~ 62% with respect to elemental carbon, suggesting that BrC radiative forcing could be largely underestimated by studies those use BrCWater only as a surrogate of total BrC.


Assuntos
Poluentes Atmosféricos/análise , Carbono/análise , Aerossóis/análise , Biomassa , Monitoramento Ambiental , Material Particulado/análise , Água
6.
Sci Total Environ ; 726: 138438, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32344250

RESUMO

Pollutants transport from South and Southeast Asia can profoundly affect the marine atmospheric boundary layer (MABL) over the Bay of Bengal (BoB). This study presents chemical and stable isotopic composition of PM10 collected at Port Blair Island (11.6°N, 92.7°E) located in the middle of the BoB during the late northeast monsoon (February-April), a period when the BoB receives considerable continental outflow. These samples (n = 50) were analysed for major ions, carbonaceous species, trace metals, and isotopic composition of total C, N, and S components. Mass concentration of PM10 ranged from 24 to 65 µg m-3 during the study period. The dominance of continental inputs over a marine realm was evident by a significant amount of non-sea-salt (nss)-SO42- (range: 1.8 to 16.9 µg m-3), which accounts for ~65% of the total water-soluble inorganic constituents. The impact of anthropogenic emissions was further evident from the widespread depletion of chloride (range: 57-100%, avg.: 98 ± 7%) from sea-salt aerosols. Carbonaceous species (elemental carbon and organic matter) contributed nearly 35% to PM10. Further, average δ13C (-25.6‰ ± 0.5) and δ34S (4.5‰ ± 1.3) values observed over the marine study region were similar to those found in typical urban environments. δ15N values (13.7‰ ± 5.1) show the significant presence of combustion sources along with the effect of atmospheric processing. Aerosol δ13C values correlate positively with the ratio of water-soluble organic carbon to total organic carbon, indicating the aging of organic aerosols during the transport. Chemical and isotopic data suggest that both biomass burning (BB) and fossil fuel burning (FFB) contributed to ambient PM10 with relatively more contribution of BB during February to early March and that of FFB during late March to middle of April. In aggregate, this study provides newer insights into sources of carbonaceous species and their chemical processing in MABL of BoB.

7.
ACS Omega ; 4(1): 1847-1853, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459439

RESUMO

This study proposes a novel approach to the use of brown carbon (BrC) absorption spectra as a tool to understand their broader composition and characteristics. The ratios of absorption coefficient (b abs) spectra over a wavelength range (310-600 nm) for water-soluble and methanol-soluble BrC were used to quantify the relative contribution of water-soluble and water-insoluble chromophores to total BrC. The same ratios for the samples collected during the day versus night were used to assess the diurnal variability in BrC composition and concentrations. Ratios of b abs at different wavelengths with respect to that at 365 nm were used to understand whether BrC is predominantly composed of one type of chromophore, that is, humic-like substances, or different chromophores (e.g., nitroaromatic compounds) with the understanding that different chromophores absorb predominantly at different wavelengths. As a case study, day/night pairs of PM2.5 samples collected from Patiala (30.33°N, 76.4°E) during paddy residue burning were used, and results are discussed. A majority of BrC from paddy residue burning were found to be water-insoluble, and the fraction of water-soluble BrC to total BrC showed a decreasing trend with increasing wavelength. During the burning period, night-time water-soluble nitrogenous organic species were found to be more absorbing than daytime water-soluble nitrogenous species. The proposed method will be very useful for BrC studies over the globe.

8.
Environ Sci Technol ; 51(12): 6765-6772, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28520413

RESUMO

Recent global models estimate that light absorption by brown carbon (BrC) in several regions of the world is ∼30-70% of that due to black carbon (BC). It is, therefore, important to understand its sources and characteristics on temporal and spatial scales. In this study, we conducted semicontinuous measurements of water-soluble organic carbon (WSOC) and BrC using particle-into-liquid sampler coupled with a liquid waveguide capillary cell and total organic carbon analyzer (PILS-LWCC-TOC) over Kanpur (26.5°N, 80.3°E, 142 m amsl) during a winter season (December 2015 to February 2016). In addition, mass concentrations of organic and inorganic aerosol and BC were also measured. Diurnal variability in the absorption coefficient of BrC at 365 nm (babs_365) showed higher values (35 ± 21 Mm-1) during late evening to early morning hours and was attributed to primary emissions from biomass burning (BB) and fossil fuel burning (FFB). The babs_365 reduced by more than 80% as the day progressed, which was ascribed to photo bleaching/volatilization of BrC and/or due to rising boundary layer height. Further, diurnal variability in the ratios of babs_405/babs_365 and babs_420/babs_365 suggests that the BrC composition was not uniform throughout a day. WSOC exhibited a strong correlation with babs_365 (slope = 1.22 ± 0.007, r2 = 0.70, n = 13 265, intercept = -0.69 ± 0.17), suggesting the presence of a significant but variable fraction of chromophores. Mass absorption efficiency (MAE) values of WSOC ranged from 0.003 to 5.26 m2 g-1 (1.16 ± 0.60) during the study period. Moderate correlation (r2 = 0.50, slope = 1.58 ± 0.019, n = 6471) of babs_365 was observed with the semivolatile oxygenated organic aerosols (SV-OOA) fraction of BB resolved from positive matrix factorization (PMF) analysis of organic mass spectral data obtained from a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The low-volatility OOA (LV-OOA) fraction of BB had a similar correlation to babs_365 (r2 = 0.54, slope = 0.38 ± 0.004, n = 6471) but appears to have a smaller contribution to the absorption.


Assuntos
Aerossóis , Carbono , Monitoramento Ambiental , Poluentes Atmosféricos , Fuligem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...