Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 5(10): 1338-1349, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34400825

RESUMO

Despite substantial conservation efforts, the loss of ecosystems continues globally, along with related declines in species and nature's contributions to people. An effective ecosystem goal, supported by clear milestones, targets and indicators, is urgently needed for the post-2020 global biodiversity framework and beyond to support biodiversity conservation, the UN Sustainable Development Goals and efforts to abate climate change. Here, we describe the scientific foundations for an ecosystem goal and milestones, founded on a theory of change, and review available indicators to measure progress. An ecosystem goal should include three core components: area, integrity and risk of collapse. Targets-the actions that are necessary for the goals to be met-should address the pathways to ecosystem loss and recovery, including safeguarding remnants of threatened ecosystems, restoring their area and integrity to reduce risk of collapse and retaining intact areas. Multiple indicators are needed to capture the different dimensions of ecosystem area, integrity and risk of collapse across all ecosystem types, and should be selected for their fitness for purpose and relevance to goal components. Science-based goals, supported by well-formulated action targets and fit-for-purpose indicators, will provide the best foundation for reversing biodiversity loss and sustaining human well-being.


Assuntos
Ecossistema , Objetivos , Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais , Humanos
2.
Biol Rev Camb Philos Soc ; 96(3): 976-998, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33561321

RESUMO

Biodiversity faces many threats and these can interact to produce outcomes that may not be predicted by considering their effects in isolation. Habitat loss and fragmentation (hereafter 'fragmentation') and altered fire regimes are important threats to biodiversity, but their interactions have not been systematically evaluated across the globe. In this comprehensive synthesis, including 162 papers which provided 274 cases, we offer a framework for understanding how fire interacts with fragmentation. Fire and fragmentation interact in three main ways: (i) fire influences fragmentation (59% of 274 cases), where fire either destroys and fragments habitat or creates and connects habitat; (ii) fragmentation influences fire (25% of cases) where, after habitat is reduced in area and fragmented, fire in the landscape is subsequently altered because people suppress or ignite fires, or there is increased edge flammability or increased obstruction to fire spread; and (iii) where the two do not influence each other, but fire interacts with fragmentation to affect responses like species richness, abundance and extinction risk (16% of cases). Where fire and fragmentation do influence each other, feedback loops are possible that can lead to ecosystem conversion (e.g. forest to grassland). This is a well-documented threat in the tropics but with potential also to be important elsewhere. Fire interacts with fragmentation through scale-specific mechanisms: fire creates edges and drives edge effects; fire alters patch quality; and fire alters landscape-scale connectivity. We found only 12 cases in which studies reported the four essential strata for testing a full interaction, which were fragmented and unfragmented landscapes that both span contrasting fire histories, such as recently burnt and long unburnt vegetation. Simulation and empirical studies show that fire and fragmentation can interact synergistically, multiplicatively, antagonistically or additively. These cases highlight a key reason why understanding interactions is so important: when fire and fragmentation act together they can cause local extinctions, even when their separate effects are neutral. Whether fire-fragmentation interactions benefit or disadvantage species is often determined by the species' preferred successional stage. Adding fire to landscapes generally benefits early-successional plant and animal species, whereas it is detrimental to late-successional species. However, when fire interacts with fragmentation, the direction of effect of fire on a species could be reversed from the effect expected by successional preferences. Adding fire to fragmented landscapes can be detrimental for species that would normally co-exist with fire, because species may no longer be able to disperse to their preferred successional stage. Further, animals may be attracted to particular successional stages leading to unexpected responses to fragmentation, such as higher abundance in more isolated unburnt patches. Growing human populations and increasing resource consumption suggest that fragmentation trends will worsen over coming years. Combined with increasing alteration of fire regimes due to climate change and human-caused ignitions, interactions of fire with fragmentation are likely to become more common. Our new framework paves the way for developing a better understanding of how fire interacts with fragmentation, and for conserving biodiversity in the face of these emerging challenges.


Assuntos
Biodiversidade , Ecossistema , Animais , Mudança Climática , Florestas , Humanos , Plantas
3.
J Environ Manage ; 230: 94-101, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30273788

RESUMO

Decision triggers are defined thresholds in the status of monitored variables that indicate when to undertake management, and avoid undesirable ecosystem change. Decision triggers are frequently recommended to conservation practitioners as a tool to facilitate evidence-based management practices, but there has been limited attention paid to how practitioners are integrating decision triggers into existing monitoring programs. We sought to understand whether conservation practitioners' use of decision triggers was influenced by the type of variables in their monitoring programs. We investigated this question using a practitioner-focused workshop involving a structured discussion and review of eight monitoring programs. Among our case studies, direct measures of biodiversity (e.g. native species) were more commonly monitored, but less likely to be linked to decision triggers (10% with triggers) than measures being used as surrogates (54% with triggers) for program objectives. This was because decision triggers were associated with management of threatening processes, which were often monitored as a surrogate for a biodiversity asset of interest. By contrast, direct measures of biodiversity were more commonly associated with informal decision processes that led to activities such as management reviews or external consultation. Workshop participants were in favor of including more formalized decision triggers in their programs, but were limited by incomplete ecological knowledge, lack of appropriately skilled staff, funding constraints, and/or uncertainty regarding intervention effectiveness. We recommend that practitioners consider including decision triggers for discussion activities (such as external consultation) in their programs as more than just early warning points for future interventions, particularly for direct measures. Decision triggers for discussions should be recognized as a critical feature of monitoring programs where information and operational limitations inhibit the use of decision triggers for interventions.


Assuntos
Biodiversidade , Tomada de Decisões , Monitoramento Ambiental , Humanos , Incerteza
4.
Glob Chang Biol ; 25(2): 675-685, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30431211

RESUMO

Species occurrence is influenced by a range of factors including habitat attributes, climate, weather, and human landscape modification. These drivers are likely to interact, but their effects are frequently quantified independently. Here, we report the results of a 13-year study of temperate woodland birds in south-eastern Australia to quantify how different-sized birds respond to the interacting effects of: (a) short-term weather (rainfall and temperature in the 12 months preceding our surveys), (b) long-term climate (average rainfall and maximum and minimum temperatures over the period 1970-2014), and (c) broad structural forms of vegetation (old-growth woodland, regrowth woodland, and restoration plantings). We uncovered significant interactions between bird body size, vegetation type, climate, and weather. High short-term rainfall was associated with decreased occurrence of large birds in old-growth and regrowth woodland, but not in restoration plantings. Conversely, small bird occurrence peaked in wet years, but this effect was most pronounced in locations with a history of high rainfall, and was actually reversed (peak occurrence in dry years) in restoration plantings in dry climates. The occurrence of small birds was depressed-and large birds elevated-in hot years, except in restoration plantings which supported few large birds under these circumstances. Our investigation suggests that different mechanisms may underpin contrasting responses of small and large birds to the interacting effects of climate, weather, and vegetation type. A diversity of vegetation cover is needed across a landscape to promote the occurrence of different-sized bird species in agriculture-dominated landscapes, particularly under variable weather conditions. Climate change is predicted to lead to widespread drying of our study region, and restoration plantings-especially currently climatically wet areas-may become critically important for conserving bird species, particularly small-bodied taxa.


Assuntos
Aves/fisiologia , Tamanho Corporal , Mudança Climática , Clima , Florestas , Tempo (Meteorologia) , Animais , Agricultura Florestal , New South Wales
5.
Glob Chang Biol ; 22(4): 1325-35, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26554638

RESUMO

Managing multiple, interacting disturbances is a key challenge to biodiversity conservation, and one that will only increase as global change drivers continue to alter disturbance regimes. Theoretical studies have highlighted the importance of a mechanistic understanding of stressor interactions for improving the prediction and management of interactive effects. However, many conservation studies are not designed or interpreted in the context of theory and instead focus on case-specific management questions. This is a problem as it means that few studies test the relationships highlighted in theoretical models as being important for ecological management. We explore the extent of this problem among studies of interacting disturbances by reviewing recent experimental studies of the interaction between fire and grazing in terrestrial ecosystems. Interactions between fire and grazing can occur via a number of pathways; one disturbance can modify the other's likelihood, intensity or spatial distribution, or one disturbance can alter the other's impacts on individual organisms. The strength of such interactions will vary depending on disturbance attributes (e.g. size or intensity), and this variation is likely to be nonlinear. We show that few experiments testing fire-grazing interactions are able to identify the mechanistic pathway driving an observed interaction, and most are unable to detect nonlinear effects. We demonstrate how these limitations compromise the ability of experimental studies to effectively inform ecological management. We propose a series of adjustments to the design of disturbance interaction experiments that would enable tests of key theoretical pathways and provide the deeper ecological understanding necessary for effective management. Such considerations are relevant to studies of a broad range of ecological interactions and are critical to informing the management of disturbance regimes in the context of accelerating global change.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Modelos Teóricos , Incêndios , Herbivoria
6.
PLoS One ; 8(5): e64282, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23691190

RESUMO

The ski industry is often perceived as having a negative impact on sensitive alpine and subalpine communities. However, empirical evidence of such impacts is lacking. We reviewed the available literature from the last 35 years to quantify the reported effects of winter recreation on faunal communities. Overall, using one-sample binomial tests ('sign tests') we found that the effects of all types of winter recreation-related disturbances (i.e. ski runs, resort infrastructure and winter tourism) were more likely to be negative or have no effect, than be positive for wildlife. More specifically, in Europe, where the majority of the available research was conducted, the impacts of winter recreation were most often negative for fauna. In terms of specific taxa, birds and to a lesser extent mammals and arthropods, responded negatively to disturbance. Results from our meta-analysis confirmed the results from our binomial tests. Richness, abundance and diversity of fauna were lower in areas affected by winter recreation when compared with undisturbed areas. For most regions and taxa, however, empirical evidence remains too limited to identify clear impacts of winter recreation. We therefore conclude that the majority of ski resorts are operating in the absence of knowledge needed to inform effective strategies for biodiversity conservation and ecologically-sound management. Thus, there is an urgent need for more empirical research to be conducted throughout this increasingly threatened ecological community, especially given the indication from the available literature that fauna often respond negatively to winter recreation.


Assuntos
Recreação , Estações do Ano , Animais , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...