Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
Nat Commun ; 15(1): 3961, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729932

RESUMO

Mechanically interlocked molecules (MIMs) including famous catenanes show switchable physical properties and attract continuous research interest due to their potential application in molecular devices. The advantages of using spin crossover (SCO) materials here are enormous, allowing for control through diverse stimuli and highly specific functions, and enabling the transfer of the internal dynamics of MIMs from solution to solid state, leading to macroscopic applications. Herein, we report the efficient self-assembly of catenated metal-organic frameworks (termed catena-MOFs) induced by stacking interactions, through the combination of rationally selected flexible and conjugated naphthalene diimide-based bis-pyridyl ligand (BPND), [MI(CN)2]- (M = Ag or Au) and Fe2+ in a one-step strategy. The obtained bimetallic Hofmann-type SCO-MOFs [FeII(BPND){Ag(CN)2}2]·3CHCl3 (1Ag) and [FeII(BPND{Au(CN)2}2]·2CHCl3·2H2O (1Au) possess a unique three-dimensional (3D) catena-MOF constructed from the polycatenation of two-dimensional (2D) layers with hxl topology. Both complexes undergo thermal- and light-induced SCO. Significantly, abnormal increases in the maximum emission intensity and dielectric constant can be detected simultaneously with the switching of spin states. This research opens up SCO-actuated bistable MIMs that afford dual functionality of coupled fluorescence emission and dielectricity.

2.
Angew Chem Int Ed Engl ; : e202404843, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622084

RESUMO

In this study, we investigated reversible intermolecular proton shifting (IPS) coupled with spin transition (ST) in a novel FeII complex. The host FeII complex and the guest carboxylic acid anion were connected by intermolecular hydrogen bonds (IHBs). We extended the intramolecular proton transfer coupled ST phenomenon to the intermolecular system. The dynamic phenomenon was confirmed by variable-temperature single-crystal X-ray diffraction, neutron crystallography, and infrared spectroscopy. The mechanism of IPS was further validated using density functional theory calculations. The discovery of IPS-coupled ST in crystalline molecular materials provides good insights into fundamental processes and promotes the design of novel multifunctional materials with tunable properties for various applications, such as optoelectronics, information storage, and molecular devices.

3.
J Am Chem Soc ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604977

RESUMO

Polar compounds with switchable polarization properties are applicable in various devices such as ferroelectric memory and pyroelectric sensors. However, a strategy to prepare polar compounds has not been established. We report a rational synthesis of a polar CoGa crystal using chiral cth ligands (SS-cth and RR-cth, cth = 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane). Both the original homo metal Co crystal and Ga crystal exhibit a centrosymmetric isostructure, where the dipole moment of metal complexes with the SS-cth ligand and those with the RR-cth ligand are canceled out. To obtain a polar compound, the Co valence tautomeric complex with SS-cth in the homo metal Co crystal is replaced with the Ga complex with SS-cth by mixing Co valence tautomeric complexes with RR-cth and Ga complexes with SS-cth. The CoGa crystal exhibits polarization switching between the pseudononpolar state at a low temperature and the polar state at a high temperature because only Co complexes exhibit changes in electric dipole moment due to metal-to-ligand charge transfer. Following the same strategy, the polarization-switchable CoZn complex was synthesized. The CoZn crystal exhibits polarization switching between the polar state at a low temperature and the pseudononpolar state at a high temperature, which is the opposite temperature dependence to that of the CoGa crystal. These results revealed that the polar crystal can be synthesized by design, using a chiral ligand. Moreover, our method allows for the control of temperature-dependent polarization changes, which contrasts with typical ferroelectric compounds, in which the polar ferroelectric phase typically occurs at low temperatures.

4.
BMC Surg ; 24(1): 116, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643112

RESUMO

BACKGROUND: Pancreatic ductal carcinoma (PDAC) is an extremely poor prognostic disease. Even though multidisciplinary treatment for PDAC has developed, supportive therapies, such as nutritional therapy or perioperative rehabilitation to sustain and complete aggressive treatment, have not yet been well-established in PDAC. The aim of this study was to elucidate the relationship between the combined index using psoas muscle mass index (PMI) values and controlling nutritional status (CONUT) score and prognosis. METHODS: We included 101 patients diagnosed with PDAC who underwent radical pancreatectomy with regional lymphadenectomy. The cut-off value was set at the first quartile (male, 6.3 cm2/m2; female 4.4 cm2/m2), and patients were classified into high PMI and low PMI groups. A CONUT score of 0 to 1 was classified as the normal nutritional status group, and 2 or more points as the malnutritional status group. Patients were further divided into three groups: high PMI and normal nutrition (good general condition group), low PMI and low nutrition (poor general condition group), and none of the above (moderate general condition group). We performed a prognostic analysis of overall survival (OS), stratified according to PMI values and CONUT scores. RESULTS: In the poor general condition group, the proportion of elderly people over 70 years of age was significantly higher than that in the other groups (p < 0.001). The poor general condition group had a significantly worse prognosis than the good and moderate general condition groups (p = 0.012 and p = 0.037). The 5-year survival rates were 10.9%, 22.3%, and 36.1% in the poor, moderate, and good general condition groups, respectively. In multivariate analysis, poor general condition, with both low PMI and malnutrition status, was an independent poor prognostic factor for postoperative OS (hazard ratio 2.161, p = 0.031). CONCLUSIONS: The combination of PMI and CONUT scores may be useful for predicting the prognosis of patients with PDAC after radical surgery.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Masculino , Feminino , Idoso , Idoso de 80 Anos ou mais , Estado Nutricional , Prognóstico , Carcinoma Ductal Pancreático/complicações , Carcinoma Ductal Pancreático/cirurgia , Carcinoma Ductal Pancreático/patologia , Músculos Psoas , Estudos Retrospectivos , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/cirurgia , Neoplasias Pancreáticas/patologia
5.
Commun Biol ; 7(1): 294, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461214

RESUMO

The continuing emergence of new strains of antibiotic-resistant bacteria has renewed interest in phage therapy; however, there has been limited progress in applying phage therapy to multi-drug resistant Mycobacterium tuberculosis (Mtb) infections. In this study, we show that bacteriophage strains D29 and DS6A can efficiently lyse Mtb H37Rv in 7H10 agar plates. However, only phage DS6A efficiently kills H37Rv in liquid culture and in Mtb-infected human primary macrophages. We further show in subsequent experiments that, after the humanized mice were infected with aerosolized H37Rv, then treated with DS6A intravenously, the DS6A treated mice showed increased body weight and improved pulmonary function relative to control mice. Furthermore, DS6A reduces Mtb load in mouse organs with greater efficacy in the spleen. These results demonstrate the feasibility of developing phage therapy as an effective therapeutic against Mtb infection.


Assuntos
Mycobacterium tuberculosis , Terapia por Fagos , Tuberculose , Animais , Camundongos , Humanos , Tuberculose/terapia , Tuberculose/microbiologia , Macrófagos/microbiologia
6.
J Am Chem Soc ; 146(12): 8206-8215, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38412246

RESUMO

Spin-crossover (SCO) materials exhibit remarkable potential as bistable switches in molecular devices. However, the spin transition temperatures (Tc) of known compounds are unable to cover the entire ambient temperature spectrum, largely limiting their practical utility. This study reports an exemplary two-dimensional SCO solid solution system, [FeIII(H0.5LCl)2-2x(H0.5LF)2x]·H2O (H0.5LX = 5-X-2-hydroxybenzylidene-hydrazinecarbothioamide, X = F or Cl, x = 0 to 1), in which the adjacent layers are adhered via hydrogen bonding. Notably, the Tc of this system can be fine-tuned across 90 K (227-316 K) in a linear manner by modulating the fraction x of the LF ligand. Elevating x results in strengthened hydrogen bonding between adjacent layers, which leads to enhanced intermolecular interactions between adjacent SCO molecules. Single-crystal diffraction analysis and periodic density functional theory calculations revealed that such a special kind of alteration in interlayer interactions strengthens the FeIIIN2O2S2 ligand field and corresponding SCO energy barrier, consequently resulting in increased Tc. This work provides a new pathway for tuning the Tc of SCO materials through delicate manipulation of molecular interactions, which could expand the application of bistable molecular solids to a much wider temperature regime.

7.
Dalton Trans ; 53(6): 2512-2516, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38224229

RESUMO

Light-induced polarization switchable molecular materials have attracted attention for decades owing to their potential remote manipulation and ultrafast responsiveness. Here we report a valence tautomeric (VT) complex with an enantiopure chiral ligand. By a suitable choice of counter anions, a significant improvement in photoconversion has been demonstrated, leading to novel photo-responsive polarization switching materials.

8.
J Am Chem Soc ; 146(1): 201-209, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38134356

RESUMO

Light, a nondestructive and remotely controllable external stimulus, effectively triggers a variety of electron-transfer phenomena in metal complexes. One prime example includes using light in molecular cyanide-bridged [FeCo] bimetallic Prussian blue analogues, where it switches the system between the electron-transferred metastable state and the system's ground state. If this process is coupled to a ferroelectric-type phase transition, the generation and disappearance of macroscopic polarization, entirely under light control, become possible. In this research, we successfully executed a nonpolar-to-polar phase transition in a trinuclear cyanide-bridged [Fe2Co] complex crystal via directional electron transfer. Intriguingly, by exposing the crystal to the wavelength of light─785 nm─without any electric field─we can drive this ferroelectric phase transition to completely depolarize the crystal, during which a measurable electric current response can be detected. These discoveries signify an important step toward the realization of fully light-controlled ferroelectric memory devices.

9.
Biomed Pharmacother ; 170: 116052, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141280

RESUMO

Chimeric antigen receptor T-cell (CAR-T) therapy has demonstrated impressive success in the treatment of patients with hematologic tumors yet achieved very limited efficacy for solid tumors due to hurdles unique to solid tumors. It is also noted that the tumor microenvironment composition varies between tumor type, which again imposes unique set of hurdles in each solid tumor. Therefore, elucidation of individual hurdles is key to achieving successful CAR-T therapy for solid tumors. In the present study, we employed an orthotopic human PDAC xenograft model, in which quantitative, spatial and functional dynamics of CAR-T cells in tumor tissues were analyzed to obtain insights into ways of overcoming PDAC related hurdles. Contrary to previous studies that demonstrated a limited persistency and infiltration of CAR-T cells in many solid tumors, they persist and accumulated in PDAC tumor tissues. Ex vivo analysis revealed that CAR-T cells that had been recovered at different time points from mice bearing an orthotopic PDAC tumor exhibited a gradual loss of tumor reactivity. This loss of tumor reactivity of CAR-T cells was associated with the increased expression of AMP-activated protein kinase and Mitofusin 1/ Dynamin-related protein 1 ratio.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Receptores de Antígenos de Linfócitos T , Linfócitos T , Xenoenxertos , Imunoterapia Adotiva , Neoplasias/metabolismo , Microambiente Tumoral
10.
Acta Radiol Open ; 12(11): 20584601231218994, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38047208

RESUMO

The purpose of this report was to evaluate the usefulness of hyperdense whirl sign on unenhanced computed tomography (CT) for diagnosing gallbladder torsion. The CT scans of seven patients with gallbladder torsion were independently reviewed by two board-certified radiologists for locating the high-density core with twisting between the gallbladder neck and liver bed, termed hyperdense whirl sign. The sign was observed in six cases. The detection of a hyperdense whirl sign on unenhanced CT appears useful for diagnosing gallbladder torsion.

11.
Chem Sci ; 14(39): 10631-10643, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37829034

RESUMO

Ferroelectric, pyroelectric, and piezoelectric compounds whose electric polarization properties can be controlled by external stimuli such as electric field, temperature, and pressure have various applications, including ferroelectric memory materials, sensors, and thermal energy-conversion devices. Numerous polarization switching compounds, particularly molecular ferroelectrics and pyroelectrics, have been developed. In these materials, the polarization switching usually proceeds via ion displacement and reorientation of polar molecules, which are responsible for the change in ionic polarization and orientational polarization, respectively. Recently, the development of electronic ferroelectrics, in which the mechanism of polarization change is charge ordering and electron transfer, has attracted great attention. In this article, representative examples of electronic ferroelectrics are summarized, including (TMTTF)2X (TMTTF = tetramethyl-tetrathiafulvalene, X = anion), α-(BEDT-TTF)2I3 (BEDT-TTF = bis(ethylenedithio)-tetrathiafulvalene), TTF-CA (TTF = tetrathiafulvalene, CA = p-chloranil), and [(n-C3H7)4N][FeIIIFeII(dto)3] (dto = 1,2-dithiooxalate = C2O2S2). Furthermore, polarization switching materials using directional electron transfer in nonferroelectrics, the so-called electronic pyroelectrics, such as [(Cr(SS-cth))(Co(RR-cth))(µ-dhbq)](PF6)3 (dhbq = deprotonated 2,5-dihydroxy-1,4-benzoquinone, cth = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraaza-cyclotetradecane), are introduced. Future prospects are also discussed, particularly the development of new properties in polarization switching through the manipulation of electronic polarization in electronic ferroelectrics and electronic pyroelectrics by taking advantage of the inherent properties of electrons.

12.
J Am Chem Soc ; 145(35): 19177-19181, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37623927

RESUMO

Multiple proton transfer (PT) controllable by external stimuli plays a crucial role in fundamental chemistry, biological activity, and material science. However, in crystalline systems, controlling multiple PT, which results in a distinct protonation state, remains challenging. In this study, we developed a novel tridentate ligand and iron(II) complex with a short hydrogen bond (HB) that exhibits a PT-coupled spin transition (PCST). Single-crystal X-ray and neutron diffraction measurements revealed that the positions of the two protons in the complex can be controlled by temperature and photoirradiation based on the thermal- and photoinduced PCST. The obtained results suggest that designing molecules that form short HBs is a promising approach for developing multiple PT systems in crystals.

13.
J Am Chem Soc ; 145(29): 15647-15651, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37462373

RESUMO

Molecular-based magnetoelectric materials are among the most promising materials for next-generation magnetoelectric memory devices. However, practical application of existing molecular systems has proven difficult largely because the polarization change is far lower than the practical threshold of the ME memory devices. Herein, we successfully obtained an [FeCo] dinuclear complex that exhibits a magnetic field-induced spin crossover process, resulting in a significant polarization change of 0.45 µC cm-2. Mössbauer spectroscopy and theoretical calculations suggest that the asymmetric structural change, coupled with electron redistribution, leads to the observed polarization change. Our approach provides a new strategy toward rationally enhancing the polarization change.

14.
Nat Commun ; 14(1): 3394, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296168

RESUMO

To alleviate the energy and environmental crisis, in the last decades, energy harvesting by utilizing optical control has emerged as a promising solution. Here we report a polar crystal that exhibits photoenergy conversion and energy storage upon light irradiation. The polar crystal consists of dinuclear [CoGa] molecules, which are oriented in a uniform direction inside the crystal lattice. Irradiation with green light induces a directional intramolecular electron transfer from the ligand to a low-spin CoIII centre, and the resultant light-induced high-spin CoII excited state is trapped at low temperature, realizing energy storage. Additionally, electric current release is observed during relaxation from the trapped light-induced metastable state to the ground state, because the intramolecular electron transfer in the relaxation process is accompanied with macroscopic polarization switching at the single-crystal level. It demonstrates that energy storage and conversion to electrical energy is realized in the [CoGa] crystals, which is different from typical polar pyroelectric compounds that exhibit the conversion of thermal energy into electricity.


Assuntos
Eletricidade , Temperatura Alta , Temperatura , Transporte de Elétrons , Temperatura Baixa
15.
RSC Adv ; 13(20): 13472-13476, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37143913

RESUMO

Production of aromatic compounds from lignocellulosic biomass has recently been one goal of efforts to establish a sustainable society. We studied cellulose conversion into aromatic compounds over charcoal-supported metal catalysts (Pt/C, Pd/C, Rh/C, and Ru/C) in water at temperatures of 473-673 K. We found that charcoal-supported metal catalysts enhanced conversion of cellulose to aromatic compounds such as benzene, toluene, phenol, and cresol. The total yields of aromatic compounds produced from cellulose decreased in the order: Pt/C > Pd/C > Rh/C > no catalyst > Ru/C. This conversion could proceed even at 523 K. The total yield of aromatic compounds reached 5.8% with Pt/C at 673 K. The charcoal-supported metal catalysts also enhanced conversion of hemicellulose to aromatic compounds.

16.
Phys Chem Chem Phys ; 25(17): 12394-12400, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37092303

RESUMO

The application of single-crystal neutron diffraction (SCND) to observe proton-transfer phenomena in crystalline compounds exhibiting unusual protonation states or proton dynamics has garnered significant research interest in recent years. However, proton tautomerism, which results in different protonation states before and after proton transfer, has never been observed using the SCND technique. Thus, to observe the proton tautomerism phenomenon by SCND measurements, we developed an iron(II) complex that forms a large crystal and exhibits a proton-transfer-coupled spin transition (PCST). The presence of the two types of proton tautomers was determined by conventional analysis of the proton position by X-ray crystallography, infrared spectroscopy, and density functional theory calculations. Finally, our results confirmed that proton tautomerism was successfully observed for the first time using variable-temperature SCND measurements.

17.
Cancers (Basel) ; 15(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36765558

RESUMO

Chimeric antigen receptor engineered T cell (CAR-T) therapy has high therapeutic efficacy against blood cancers, but it has not shown satisfactory results in solid tumors. Therefore, we examined the therapeutic effect of CAR-T therapy targeting carcinoembryonic antigen (CEA) in pancreatic adenocarcinoma (PDAC). CEA expression levels on the cell membranes of various PDAC cell lines were evaluated using flow cytometry and the cells were divided into high, medium, and low expression groups. The relationship between CEA expression level and the antitumor effect of anti-CEA-CAR-T was evaluated using a functional assay for various PDAC cell lines; a significant correlation was observed between CEA expression level and the antitumor effect. We created orthotopic PDAC xenograft mouse models and injected with anti-CEA-CAR-T; only the cell line with high CEA expression exhibited a significant therapeutic effect. Thus, the therapeutic effect of CAR-T therapy was related to the target antigen expression level, and the further retrospective analysis of pathological findings from PDAC patients showed a correlation between the intensity of CEA immunostaining and tumor heterogeneity. Therefore, CEA expression levels in biopsies or surgical specimens can be clinically used as biomarkers to select PDAC patients for anti-CAR-T therapy.

18.
J Clin Med ; 11(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36431350

RESUMO

Thromboendarterectomy of the common femoral artery (CFA) for occlusive disease is a crucial procedure in vascular surgery. As an outcome reference for emerging endovascular procedures and new devices, we need more robust evidence of the outcome of this gold standard technique. The purpose of this study was to report 10-year results after femoral endarterectomy (FEA). A retrospective review of medical records at our institution identified eighty consecutive patients (91 limbs) who underwent FEA for CFA lesions. Indications for FEA included 50 limbs (55%) for intermittent claudication (IC) and 39 limbs (43%) with chronic limb-threatening ischemia (CLTI). Two limbs (2%) underwent FEA to prevent hemodynamic steal during extra-anatomical bypass. Adjunctive procedures included endovascular therapy in 32%. CFAs were closed with patch angioplasty in 44%. With a mean follow-up period of 39 months, the survival rates at 3 and 8 years were 85% and 77%, respectively. Limb salvage rates were 92% and 87%. Primary patencies were 98% and 84%. Freedom from target lesion revascularization was 95% at 3 years and 91% at 8 years. Our findings support the durability of FEA, with comparable long-term procedural results in CLTI patients as well as IC patients. Since the FEA is a gate maneuver for hybrid revascularization in CLTI patients, our findings support a strategy combining open and endovascular approaches. Femoral endarterectomy remains a durable solution for common femoral occlusive disease in IC and CLTI in the era of endovascular therapy.

19.
Chemistry ; 28(59): e202202161, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35913048

RESUMO

The crystallization of a complex having electron transfer properties in a polar space group can induce the polarization switching of a crystal in a specific direction, which is attractive for the development of sensors, memory devices, and capacitors. Unfortunately, the probability of crystallization in a polar space group is usually low. Noticing that enantiopure compounds crystallize in Sohncke space groups, this paper reports a strategy for the molecular design of non-ferroelectric polarization switching crystals based on the use of intramolecular electron transfer and chirality. In addition, this paper describes the synthesis of a mononuclear valence tautomeric (VT) cobalt complex bearing an enantiopure ligand. The introduction of enantiomer enables the crystallization of the complex in the polar space group (P21 ). The polarization of the crystals along the b-axis direction is not canceled out and the VT transition is accompanied by a change in the macroscopic polarization of the polar crystal. Polarization switching via electron transfer is realized at around room temperature.

20.
Angew Chem Int Ed Engl ; 61(39): e202208771, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35906869

RESUMO

Using light as a local heat source to induce a temporary pyroelectric current is widely recognized as an effective way to control the polarization of crystalline materials. In contrast, harnessing light directly to modulate the polarization of a crystal via excitation of the electronic bands remains less explored. In this study, we report an FeII spin crossover crystal that exhibits photoinduced macroscopic polarization change upon excitation by green light. When the excited crystal relaxes to the ground state, the corresponding pyroelectric current can be detected. An analysis of the structures, magnetic properties and the Mössbauer and infrared spectra of the complex, supported by calculations, revealed that the polarization change is dictated by the directional relative movement of ions during the spin transition process. The spin transition and polarization change occur simultaneously in response to light stimulus, which demonstrates the enormous potential of polar spin crossover systems in the field of optoelectronic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...