Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Pharm Bull ; 30(8): 1390-4, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17666791

RESUMO

Previously, we have reported that the exposure of PC12 cells to the aluminum-maltolate complex (Al(maltol)(3)) results in decreased cell viability via the apoptotic cell death pathway. In this study, we have used several nitric oxide synthase (NOS) inhibitors and the NO generator diethylenetriamine NONOate (DETA NONOate) to examine whether or not intracellular nitric oxide (NO) generation is involved in the onset mechanism of Al(maltol)(3)-induced cell death. Cell viability was assessed by measuring lactate dehydrogenase (LDH) release and caspase-3 activity. Treatment of the cells with 150 microM Al(maltol)(3) for 48 h resulted in intracellular NO generation. Exposure of the cells to DETA NONOate also induced a marked decrease in cell viability. Pre-treatment of the cells with a general NOS inhibitor or with a selective inducible NOS (iNOS) inhibitor effectively prevented Al(maltol)(3)-induced cell death. However, a neuronal NOS (nNOS) inhibitor did not exhibit any protective effect against Al(maltol)(3)-induced cell death. In addition, ascorbic acid markedly inhibited Al(maltol)(3)- and DETA NONOate-induced cell death. Based on these results, we discussed the involvement of intracellular NO generation in the onset mechanisms of Al(maltol)(3)-induced cell death.


Assuntos
Alumínio/toxicidade , Óxido Nítrico/metabolismo , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Caspase 3/metabolismo , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/ultraestrutura , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/toxicidade , L-Lactato Desidrogenase/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Proteínas de Neoplasias/análise , Proteínas de Neoplasias/biossíntese , Óxido Nítrico Sintase/antagonistas & inibidores , Compostos Nitrosos/farmacologia , Compostos Organometálicos/toxicidade , Células PC12 , Pironas/toxicidade , Ratos , Tioureia/análogos & derivados , Tioureia/farmacologia
2.
Biol Pharm Bull ; 28(6): 941-6, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15930723

RESUMO

Exposure of rat phenochromocytoma cells (PC12 cells) to aluminum maltolate complex, Al(maltol)3, induced a decrease in intracellular glutathione (GSH) concentration, resulting in a facilitated release of lactate dehydrogenase (LDH) from the cell and an increase in trypan blue-stained cells. Similar phenomena were observed as the cells were treated with L-buthione-[S,R]-sulfoximine (BSO) in the presence of Al(maltol)3. On the other hand, treatment of PC 12 cells with BSO alone in the absence of Al(maltol)3 did not affect the cell viability. Pre-treatment of PC12 cells with N-acetylcysteine (NAC) for 30 min before a 48 h-exposure to Al(maltol)3 effectively protected the cells from Al(maltol)3 toxicity by increasing intracellular GSH concentration. NAC also effectively inhibited reactive oxygen species (ROS) generation induced by treatment of the cells with Al(maltol)3. However, several lipophilic radical scavengers such as alpha-tocopherol and 3(2)-tert-butyl-4-hydroxyanisole, and an iron chelator, desferrioxamine, did not prevent Al(maltol)3-mediated ROS production or the decrease of cell viability. Based on these results, we discussed the role of intracellular GSH against the onset of aluminum toxicity in the context of ROS production.


Assuntos
Glutationa/deficiência , Compostos Organometálicos/toxicidade , Pironas/toxicidade , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Líquido Intracelular/efeitos dos fármacos , Líquido Intracelular/metabolismo , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo
3.
Toxicology ; 176(3): 195-207, 2002 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12093616

RESUMO

In the present study, we examined the effect of two salts of aluminum (Al), aluminum maltolate (Almal) and aluminum chloride (AlCl(3)), on the cell viability of PC12 cells in the absence and presence of nerve growth factor (NGF). A 72-h exposure of PC12 cells to Almal (300 microM) resulted in a marked increase of lactic dehydrogenase (LDH) release from the cells and a decrease of 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) activity. These results indicate that Almal induces a decrease in the cell viability. Under the same conditions, Almal also caused DNA ladder formation and chromatin condensation. In contrast, AlCl(3) did not showed an increased LDH release and a decreased MTT activity in the concentration range of the salt tested (0.1-1 mM). The extent of LDH release and MTT activity decrease induced by Almal treatment closely depended on the amount of Almal incorporated into the cells. An increase in the fluorescence intensity of 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate, di(acetoxymethyl ester) (C-DCDHF-DA) which was loaded into the cell by Almal treatment and its prevention by pyrrolodine dithiocarbamate, a potent antioxidant, suggested that Almal-induced cell death partly proceeds via reactive oxygen species (ROS) production. NGF effectively inhibited the increase of LDH release and the decrease of MTT activity, as well as DNA fragmentation and chromatin condensation. However, NGF did not inhibit the increase of C-DCDHF-DA fluorescence in the cells induced by Almal treatment. From these results, it is suggested that ROS production associated with accumulation of Al is one possible important factor in the onset of Al neurotoxicity via apoptotic cell death and that NGF protects against cell degeneration associated with Al accumulation, but independently of ROS production.


Assuntos
Alumínio/antagonistas & inibidores , Alumínio/toxicidade , Fatores de Crescimento Neural/farmacologia , Alumínio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Células PC12 , Proteínas/análise , Ratos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA