Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Acta Neuropathol ; 145(6): 749-772, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37115208

RESUMO

TREM2 is an innate immune receptor expressed by microglia in the adult brain. Genetic variation in the TREM2 gene has been implicated in risk for Alzheimer's disease and frontotemporal dementia, while homozygous TREM2 mutations cause a rare leukodystrophy, Nasu-Hakola disease (NHD). Despite extensive investigation, the role of TREM2 in NHD pathogenesis remains poorly understood. Here, we investigate the mechanisms by which a homozygous stop-gain TREM2 mutation (p.Q33X) contributes to NHD. Induced pluripotent stem cell (iPSC)-derived microglia (iMGLs) were generated from two NHD families: three homozygous TREM2 p.Q33X mutation carriers (termed NHD), two heterozygous mutation carriers, one related non-carrier, and two unrelated non-carriers. Transcriptomic and biochemical analyses revealed that iMGLs from NHD patients exhibited lysosomal dysfunction, downregulation of cholesterol genes, and reduced lipid droplets compared to controls. Also, NHD iMGLs displayed defective activation and HLA antigen presentation. This defective activation and lipid droplet content were restored by enhancing lysosomal biogenesis through mTOR-dependent and independent pathways. Alteration in lysosomal gene expression, such as decreased expression of genes implicated in lysosomal acidification (ATP6AP2) and chaperone mediated autophagy (LAMP2), together with reduction in lipid droplets were also observed in post-mortem brain tissues from NHD patients, thus closely recapitulating in vivo the phenotype observed in iMGLs in vitro. Our study provides the first cellular and molecular evidence that the TREM2 p.Q33X mutation in microglia leads to defects in lysosomal function and that compounds targeting lysosomal biogenesis restore a number of NHD microglial defects. A better understanding of how microglial lipid metabolism and lysosomal machinery are altered in NHD and how these defects impact microglia activation may provide new insights into mechanisms underlying NHD and other neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Microglia , Adulto , Humanos , Microglia/metabolismo , Metabolismo dos Lipídeos/genética , Mutação com Perda de Função , Mutação/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Lisossomos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Receptor de Pró-Renina
2.
Fish Shellfish Immunol ; 128: 157-167, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35917887

RESUMO

White spot syndrome virus (WSSV) is one of the most concerning pathogens in penaeid shrimp and can cause severe loss in shrimp aquaculture worldwide. Among the WSSV structural proteins, VP15, a DNA-binding protein located in the WSSV nucleocapsid, is an antiviral protein candidate to protect kuruma shrimp (Marsupenaeus japonicus) from WSSV infection. We identified that the truncated VP15, VP15(26-57), is responsible for the protective effect against the WSSV. This study attempts to develop an immunizing agent against WSSV using silkworm pupa as a delivery vector through oral administration. The VP15, VP15(26-57), and SR11 peptide derived from VP15(26-57) were expressed in silkworm pupae. Oral administration of feed mixed with the powdered pupae that expressed VP15-derived constructs enhanced the survivability of kuruma shrimp with an overall relative percent survival (RPS) higher than 70%. There is no death for the group receiving pupa/VP15(26-57), and the RPS is 100%. In addition, we also investigated the relative mRNA expression levels of immune-related genes by qPCR at different time points. Our results indicate that the oral administration of pupa/VP15-derived products could provide a high protective effect against WSSV and be a practical approach for controlling WSSV in aquaculture.


Assuntos
Bombyx , Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Administração Oral , Animais , Antivirais/metabolismo , Bombyx/genética , Proteínas de Ligação a DNA/metabolismo , Imunização , Peptídeos/metabolismo , Pupa , RNA Mensageiro/metabolismo , Vírus da Síndrome da Mancha Branca 1/fisiologia
3.
J Nat Prod ; 84(6): 1748-1754, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34100599

RESUMO

To develop drugs to treat Alzheimer's disease (AD) on the basis of the amyloid cascade hypothesis, the amyloid-ß (Aß) aggregation inhibitory activities of 110 extracts from mushrooms were evaluated by thioflavin T (Th-T) assays. The MeOH extract of Albatrellus yasudae inhibited Aß aggregation, and the bioactivity-guided fractionation of the extract afforded four novel meroterpenoids, named scutigeric acid (1), albatrelactone methyl ester (2), albatrelactone (3), and 10',11'-dihydroxygrifolic acid (4), together with two known compounds, grifolin (5) and grifolic acid (6). The structures of 1-4 were elucidated using NMR, MS, UV, IR, and induced ECD spectral data. The structure of 1 was determined as a methyl ester (1a) by 2D NMR spectroscopy. Th-T assays showed that compounds 1-4 and 1a possessed inhibitory activities against Aß aggregation, with IC50 values of 6.6, 40.7, 51.4, 53.3, and 50.3 µM, respectively. Notably, 1 possessed an inhibitory activity against Aß aggregation comparable to that of myricetin as a positive control. Moreover, 1-6 exhibited inhibitory activities against BACE1, with IC50 values of 1.6, 10.9, 10.5, 34.4, 6.1, and 1.4 µM, respectively.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Basidiomycota/química , Terpenos/farmacologia , Agaricales/química , Doença de Alzheimer/tratamento farmacológico , Humanos , Japão , Estrutura Molecular , Terpenos/isolamento & purificação
4.
Sci Rep ; 11(1): 12766, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140570

RESUMO

White spot syndrome virus (WSSV) is one of the most devastating pathogens in penaeid shrimp and can cause massive damage in shrimp aquaculture industries. Previously, the WSSV structural protein VP15 was identified as an antigenic reagent against WSSV infections. In this study, we truncated this protein into VP15(1-25), VP15(26-57), VP15(58-80), and VP15(1-25,58-80). The purified proteins from the E. coli expression system were assayed as potential protective agents in Kuruma shrimp (Marsupenaeus japonicus) using the prime-and-boost strategy. Among the four truncated constructs, VP15(26-57) provided a significant improvement in the shrimp survival rate after 20 days of viral infection. Subsequently, four peptides (KR11, SR11, SK10, and KK13) from VP15(26-57) were synthesized and applied in an in vivo assay. Our results showed that SR11 could significantly enhance the shrimp survival rate, as determined from the accumulated survival rate. Moreover, a multiligand binding protein with a role in the host immune response and a possible VP15-binding partner, MjgC1qR, from the host M. japonicus were employed to test its binding with the VP15 protein. GST pull-down assays revealed that MjgC1qR binds with VP15, VP15(26-57), and SR11. Taken together, we conclude that SR11 is a determinant antigenic peptide of VP15 conferring antiviral activity against WSSV.


Assuntos
Antígenos Virais/química , Antivirais/farmacologia , Proteínas do Nucleocapsídeo/química , Penaeidae/virologia , Peptídeos/química , Sequência de Aminoácidos , Animais , Bombyx , Proteínas do Nucleocapsídeo/metabolismo , Filogenia , Domínios Proteicos , Vacinação , Vírus da Síndrome da Mancha Branca 1/efeitos dos fármacos , Vírus da Síndrome da Mancha Branca 1/fisiologia
5.
Ecotoxicol Environ Saf ; 208: 111640, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396160

RESUMO

Shrimp inhabiting coasts that are frequented by humans are exposed to various pollutants. Additionally, viral infections that cause serious damage to shrimp populations have been observed in these environments. The present study sought to evaluate the immunotoxic effects of phenanthrene (Phe), a pollutant detected in coastal environments, on kuruma shrimp (Penaeus japonicus). We further examined the survival of shrimp following combined exposure to Phe (30 or 300 µg/L) and white spot syndrome virus (WSSV). Results show that exposure to Phe for seven days decreased immune system-related parameters, including total hemocyte count and phenoloxidase activity in hemolymph (p < 0.05). However, these effects were not detected after three days of exposure. Moreover, a combined exposure assay revealed that shrimp mortality increased following exposure to 300 µg/L Phe and infection with WSSV. The number of WSSV gene copies was also observed to increase in these co-exposed shrimp. Taken together, these results indicate that long-term Phe exposure impairs the immune system of P. japonicus, resulting in fatal proliferation of WSSV. Hence, considering that combined exposure to Phe and WSSV leads to increased mortality of shrimp, it is imperative that the detrimental effects elicited by multiple stresses be considered, and controlled, in areas inhabited by kuruma shrimp.


Assuntos
Penaeidae/imunologia , Penaeidae/virologia , Fenantrenos/toxicidade , Poluentes Químicos da Água/toxicidade , Vírus da Síndrome da Mancha Branca 1/patogenicidade , Animais , DNA Viral/metabolismo , Hemolinfa/efeitos dos fármacos , Hemolinfa/metabolismo , Humanos , Penaeidae/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
6.
Intractable Rare Dis Res ; 9(4): 217-221, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33139980

RESUMO

By combining genomic data and brain imaging data, a recent study has identified a novel gene named FAM222A that participates in the formation of amyloid-ß (Aß) plaques and brain atrophy in Alzheimer's disease (AD). FAM222A encodes a 47-kDa protein designated Aggregatin that accumulates in the center of amyloid plaques and physically interacts with Aß to facilitate Aß aggregation. Aggregatin is expressed predominantly in the central nervous system (CNS) and its levels are increased in brains of the patients with AD and in mouse models of AD. However, at present, the precise cell types that express Aggregatin in the human CNS remain unknown. By immunohistochemistry, we studied Aggregatin expression in the frontal lobe of the patients with AD, Nasu-Hakola disease (NHD), and the subjects who died of non-neurological causes (NNC). We identified the clusters of Aggregatin-positive reactive astrocytes distributed widely in the cerebral cortex of most cases examined. In contrast, small numbers of cortical neurons showed variable immunoreactivities for Aggregatin, whereas microglia and oligodendrocytes did not express Aggregatin. Importantly, amyloid plaques were not clearly labelled with anti-Aggregatin antibody. These results suggest that Aggregatin plays a primarily role in generation of reactive astrocytes in the human CNS.

7.
Front Immunol ; 11: 559342, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101276

RESUMO

The R47H variant in the microglial triggering receptor expressed on myeloid cell 2 (TREM2) receptor is a strong risk factor for Alzheimer's disease (AD). To characterize processes affected by R47H, we performed an integrative network analysis of genes expressed in brains of AD patients with R47H, sporadic AD without the variant, and patients with polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy (PLOSL), systemic disease with early-onset dementia caused by loss-of-function mutations in TREM2 or its adaptor TYRO protein tyrosine kinase-binding protein (TYROBP). Although sporadic AD had few perturbed microglial and immune genes, TREM2 R47H AD demonstrated upregulation of interferon type I response and pro-inflammatory cytokines accompanied by induction of NKG2D stress ligands. In contrast, PLOSL had distinct sets of highly perturbed immune and microglial genes that included inflammatory mediators, immune signaling, cell adhesion, and phagocytosis. TREM2 knockout (KO) in THP1, a human myeloid cell line that constitutively expresses the TREM2- TYROBP receptor, inhibited response to the viral RNA mimetic poly(I:C) and phagocytosis of amyloid-beta oligomers; overexpression of ectopic TREM2 restored these functions. Compared with wild-type protein, R47H TREM2 had a higher stimulatory effect on the interferon type I response signature. Our findings point to a role of the TREM2 receptor in the control of the interferon type I response in myeloid cells and provide insight regarding the contribution of R47H TREM2 to AD pathology.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Encéfalo/imunologia , Encéfalo/metabolismo , Imunidade , Glicoproteínas de Membrana/genética , Mutação , Receptores Imunológicos/genética , Alelos , Doença de Alzheimer/patologia , Substituição de Aminoácidos , Biomarcadores , Biópsia , Encéfalo/patologia , Linhagem Celular , Biologia Computacional/métodos , Citocinas/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Mutação com Perda de Função , Glicoproteínas de Membrana/metabolismo , Fagocitose/genética , Fagocitose/imunologia , Receptores Imunológicos/metabolismo , Transdução de Sinais
8.
J Nanobiotechnology ; 18(1): 152, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33109213

RESUMO

BACKGROUND: With the enormous increment of globalization and global warming, it is expected that the number of newly evolved infectious diseases will continue to increase. To prevent damage due to these infections, the development of a diagnostic method for detecting a virus with high sensitivity in a short time is highly desired. In this study, we have developed a disposable electrode with high-sensitivity and accuracy to evaluate its performances for several target viruses. RESULTS: Conductive silicon rubber (CSR) was used to fabricate a disposable sensing matrix composed of nitrogen and sulfur-co-doped graphene quantum dots (N,S-GQDs) and a gold-polyaniline nanocomposite (AuNP-PAni). A specific anti-white spot syndrome virus (WSSV) antibody was conjugated to the surface of this nanocomposite, which was successfully applied for the detection of WSSV over a wide linear range of concentration from 1.45 × 102 to 1.45 × 105 DNA copies/ml, with a detection limit as low as 48.4 DNA copies/ml. CONCLUSION: The engineered sensor electrode can retain the detection activity up to 5 weeks, to confirm its long-term stability, required for disposable sensing applications. This is the first demonstration of the detection of WSSV by a nanofabricated sensing electrode with high sensitivity, selectivity, and stability, providing as a potential diagnostic tool to monitor WSSV in the aquaculture industry.


Assuntos
Compostos de Anilina/química , Grafite/química , Nanofios/química , Pontos Quânticos/química , Elastômeros de Silicone/química , Vírus da Síndrome da Mancha Branca 1/química , Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos , Ouro/química , Humanos , Limite de Detecção , Nanopartículas Metálicas/química , Nanocompostos/química , Sensibilidade e Especificidade , Propriedades de Superfície
9.
Sci Rep ; 10(1): 17995, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093587

RESUMO

Genetic variations of TREM2 have been implicated as a risk factor of Alzheimer's disease (AD). Recent studies suggest that the loss of TREM2 function compromises microglial responses to the accumulation of amyloid beta. Previously, we found that exon 3 of TREM2 is an alternative exon whose skipping leads to a reduction in full-length TREM2 protein by inducing nonsense-mediated mRNA decay. Here, we aimed to identify factors regulating TREM2 splicing. Using a panel of RNA-binding proteins, we found that exon 3 skipping of TREM2 was promoted by two paralogous proteins, CELF1 and CELF2, which were both linked previously with risk loci of AD. Although the overexpression of both CELF1 and CELF2 enhanced exon 3 skipping, only CELF2 reduced the expression of full-length TREM2 protein. Notably, the TREM2 ortholog in the green monkey, but not in the mouse, showed alternative splicing of exon 3 like human TREM2. Similarly, splicing regulation of exon 3 by CELF1/2 was found to be common to humans and monkeys. Using chimeric minigenes of human and mouse TREM2, we mapped a CELF-responsive sequence within intron 3 of human TREM2. Collectively, our results revealed a novel regulatory factor of TREM2 expression and highlighted a species-dependent difference of its regulation.


Assuntos
Processamento Alternativo , Proteínas CELF/metabolismo , Éxons , Regulação da Expressão Gênica , Glicoproteínas de Membrana/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/genética , Animais , Proteínas CELF/genética , Células HEK293 , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/metabolismo , Especificidade da Espécie
10.
Fish Shellfish Immunol ; 101: 152-158, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32234560

RESUMO

White spot syndrome virus (WSSV) is known as one of the most lethal pathogenic viruses in shrimp causing massive damage to shrimp aquaculture industries. To date, no effective treatment or prevention has been found. In this study, five recombinant viral proteins VP15, VP19, VP24, VP26, and VP28 were expressed and purified in E. coli, which were employed as candidates against WSSV in Kuruma shrimp Marsupenaeus japonicus. In vivo antiviral assay in this study newly revealed that VP15 of major nucleocapsid protein, being known as a DNA-binding protein provided the substantial protection against the viral infection when pre-injected into shrimps. Furthermore, we also verified the immunogenic effects of purified VP15 and VP19 proteins produced in a silkworm-bacmid expression system. Taken together, our study identified VP15 as an effective candidate against WSSV infection in the Kuruma shrimp. It is interesting to uncover why and how VP15 is involved in the immune memory in shrimp in the future study.


Assuntos
Proteínas do Nucleocapsídeo/imunologia , Penaeidae/imunologia , Vírus da Síndrome da Mancha Branca 1/imunologia , Animais , Bombyx/crescimento & desenvolvimento , Bombyx/fisiologia , Bombyx/virologia , Escherichia coli/genética , Interações Hospedeiro-Patógeno , Larva/crescimento & desenvolvimento , Larva/fisiologia , Larva/virologia , Penaeidae/virologia , Substâncias Protetoras
11.
J Nat Prod ; 82(7): 1797-1801, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31244141

RESUMO

BACE1 inhibitory activity-guided fractionation of an extract of the fruiting body of Boletinus asiaticus yielded five novel meroterpenoids (1-5) and one known compound (6; asiaticusin A). The structures of these compounds were determined by interpretation of NMR, MS, and IR spectral data. The five new compounds contain 4-hydroxybenzoic acid and geranylgeranoic acid units. Compounds 4-6 possessed BACE1 inhibitory activity (IC50 values: 14.7, 11.4, and 2.0 µM, respectively).


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Basidiomycota/química , Carpóforos/química , Terpenos/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Concentração Inibidora 50 , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray , Terpenos/farmacologia
12.
Intractable Rare Dis Res ; 8(2): 120-128, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31218162

RESUMO

Glycoprotein non-metastatic melanoma protein B (GPNMB) is a type I transmembrane glycoprotein first identified in low-metastatic human melanoma cell lines as a regulator of tumor growth. GPNMB is widely expressed in various tissues, where it is involved in cell differentiation, migration, inflammation/anti-inflammation, tissue regeneration, and neuroprotection. GPNMB is identified in microglia of adult rat brains, neurons and astrocytes of GPNMB transgenic (Tg) mouse brains, and motor neurons of amyotrophic lateral sclerosis (ALS) patients. Nasu-Hakola disease (NHD) is a rare autosomal recessive disorder, characterized by progressive presenile dementia and formation of multifocal bone cysts, caused by genetic mutations of either TYROBP (DAP12) or TREM2. TREM2 and DAP12 constitute a receptor/adaptor signaling complex expressed exclusively on osteoclasts, dendritic cells, macrophages, and microglia. Pathologically, the brains of NHD patients exhibit leukoencephalopathy, astrogliosis, accumulation of axonal spheroids, and remarkable activation of microglia predominantly in the white matter of frontal and temporal lobes and the basal ganglia. At present, molecular mechanisms responsible for development of leukoencephaolpathy in NHD brains remain totally unknown. Recent evidence indicates that disease-associated microglia (DAM) that cluster around amyloid plaques express high levels of GPNMB in Alzheimer's disease (AD) brains. Because microglia act as a key regulator of leukoencephalopathy in NHD brains, it is proposed that GPNMB expressed on microglia might play a protective role in progression of leukoencephalopathy possibly via active phagocytosis of myelin debris. In the present study using immunohistochemistry, we have attempted to clarify the expression of GPNMB in NHD brains, compared with AD brains. We found that microglia accumulating in the white matter express an intense GPNMB immunoreactivity in both NHD and AD brains, suggesting that the accumulation of GPNMB-immunoreactive microglia is a general phenomenon in neurodegenerative brains.

13.
Intractable Rare Dis Res ; 8(4): 260-265, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31890453

RESUMO

We previously identified an evolutionarily conserved protein named transmembrane protein 119 (TMEM119) as the most reliable maker for human microglia. Recent studies showed that under homeostatic conditions, microglia intensely express TMEM119, whereas the expression levels are greatly reduced in disease-associated microglia (DAM) activated at the site of neurodegeneration. Nasu-Hakola disease (NHD) is a rare autosomal recessive disorder, pathologically characterized by leukoencephalopathy, astrogliosis, axonal spheroids, and accumulation of microglia. However, it remains unknown whether microglia are homeostatic or activated in NHD brains. In the present study, we identified TMEM119 on microglia in NHD brains by immunohistochemistry. TMEM119 was expressed on microglia in NHD brains as well as in the brains of non-neurological controls (NC) and Alzheimer's disease (AD) patients, although TMEM119-immunolabeled areas exhibited great variability from case to case without significant differences among the study population. These results suggest that TMEM119 expression on microglia might play a key role in steady-state brain maintenance in NHD, AD and controls.

14.
Intractable Rare Dis Res ; 7(4): 251-257, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30560017

RESUMO

Gamma-interferon-inducible lysosomal thiol reductase (GILT), expressed in antigen-presenting cells (APCs), facilitates the reduction of disulfide bonds of endocytosed proteins in the endocytic pathway and they are further processed for presentation of immunogenic peptides loaded on major histocompatibility complex (MHC) class II. Although the constitutive and IFNγ-inducible expression of GILT was observed in various APCs, such as dendritic cells, monocytes/macrophages, and B cells, GILT-expressing cell types remain unknown in the human central nervous system (CNS). Nasu-Hakola disease (NHD) is a rare autosomal recessive disorder characterized by sclerosing leukoencephalopathy and multifocal bone cysts, caused by a loss-of-function mutation of either TYROBP (DAP12) or TREM2, both of which are expressed on microglia. A rare heterozygous variant of the TREM2 gene encoding p.Arg47His causes a 3-fold increase in the risk for late-onset Alzheimer's disease (LOAD), suggesting that both NHD and AD are induced by dysfunction of the microglial TREM2 signaling pathway in the brains. We studied by immunohistochemistry GILT expression in NHD and AD brains. GILT was expressed on amoeboid microglia with the highest levels of expression in AD brains, compared with those in non-neurological control (NC) brains and in NHD brains. In AD brains, the clusters of amoeboid microglia surrounding amyloid-beta (Aꞵ) deposition strongly expressed GILT. Furthermore, a human microglial cell line expressed GILT in response to IFNγ. These results indicate that microglia, expressing constitutively high levels of GILT, act as a principal cell type of APCs in AD brains, in contrast to baseline levels of GILT expression in NHD brains.

15.
PLoS One ; 13(5): e0196929, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29738527

RESUMO

MiRNA molecules are important post-transcriptional regulators of gene expression in the brain function. Altered miRNA profiles could represent a defensive response against the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease (AD). Endogenous miRNAs have lower toxic effects than other gene silencing methods, thus enhancing the expression of defensive miRNA could be an effective therapy. However, little is known about the potential of targeting miRNAs for the treatment of AD. Here, we examined the function of the miR-200 family (miR-200a, -141, -429, -200b, -200c), identified using miRNA microarray analysis of cortical tissue from Tg2576 transgenic mice. In murine primary neurons, we found that upregulation of miR-200b or -200c was induced by the addition of amyloid beta (Aß). Neurons transfected with miR-200b or -200c reduced secretion of Aß in conditioned medium. Moreover, mice infused with miR-200b/c into the brain were relieved of memory impairments induced by intracerebroventricular injection of oligomeric Aß, and demonstrated proper spatial learning in the Barnes maze. To gain further understanding of the relationship between miR-200b/c and Aß, we identified target mRNAs via an RNA-binding protein immunoprecipitation-microarray assay. Western blot analysis showed that expression of ribosomal protein S6 kinase B1 (S6K1), a candidate target, was inhibited by miR-200c. S6K1, a downstream effector of mammalian target of rapamycin (mTOR), serves as a negative feedback mediator that phosphorylates insulin receptor substrate 1 at serine residues (IRS-1pSer). S6K1-dependent IRS-1pSer suppresses insulin signaling leading to insulin resistance, which is frequently observed in AD brains. Notably, miR-200b/c transfection of SH-SY5Y cells reduced the levels of IRS-1pSer. This finding indicates that miR-200b/c has the potential to alleviate insulin resistance via modulation of S6K1. Taken together, miR-200b/c may contribute to reduce Aß secretion and Aß-induced cognitive impairment by promoting insulin signaling.


Assuntos
Doença de Alzheimer/genética , Proteínas Substratos do Receptor de Insulina/genética , MicroRNAs/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/administração & dosagem , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Disfunção Cognitiva/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Infusões Intraventriculares , Transtornos da Memória/genética , Transtornos da Memória/patologia , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais
16.
Sci Rep ; 8(1): 6937, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720600

RESUMO

Loss-of-function mutations in TREM2 cause Nasu-Hakola disease (NHD), a rare genetic disease characterized by early-onset dementia with leukoencephalopathy and bone cysts. An NHD-associated mutation, c.482 + 2 T > C, disrupts the splice donor site of intron 3 and causes aberrant skipping of exon 3, resulting in the loss of full-length TREM2 protein. Here, we examined the efficacy of artificial U1 and U7 small nuclear RNAs (snRNAs) designed to enhance exon 3 inclusion. Using mutant TREM2 minigenes, we found that some modified U1, but not U7, snRNAs enhanced exon 3 inclusion and restored TREM2 protein expression. Unexpectedly, we found that exon 3 of wild-type TREM2 is an alternative exon, whose skipping leads to reduced expression of the full-length protein. Indeed, TREM2 protein levels were modulated by modified snRNAs that either promoted or repressed exon 3 inclusion. The splice donor site flanking exon 3 was predicted to be weak, which may explain both the alternative splicing of exon 3 under normal conditions and complete exon skipping when the c.482 + 2 T > C mutation was present. Collectively, our snRNA-based approaches provide a potential therapeutic strategy for NHD-associated mis-splicing and novel insights into the post-transcriptional regulation of TREM2.


Assuntos
Processamento Alternativo , Glicoproteínas de Membrana/genética , Mutação , Processamento Pós-Transcricional do RNA , RNA Nuclear Pequeno/genética , Receptores Imunológicos/genética , Reparo Gênico Alvo-Dirigido , Sequência de Bases , Linhagem Celular , Éxons , Humanos , Glicoproteínas de Membrana/metabolismo , Modelos Biológicos , Sítios de Splice de RNA , Receptores Imunológicos/metabolismo , Reparo Gênico Alvo-Dirigido/métodos
17.
Intractable Rare Dis Res ; 7(1): 32-36, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29552443

RESUMO

Nasu-Hakola disease (NHD) is a rare autosomal recessive disorder, characterized by progressive presenile dementia and formation of multifocal bone cysts, caused by genetic mutations of either triggering receptor expressed on myeloid cells 2 (TREM2) or TYRO protein tyrosine kinase binding protein (TYROBP), alternatively named DNAX-activation protein 12 (DAP12), both of which are expressed on microglia in the brain and form the receptor-adaptor complex that chiefly recognizes anionic lipids. TREM2 transmits the signals involved in microglial survival, proliferation, chemotaxis, and phagocytosis. A recent study indicated that a loss of TREM2 function causes greater amounts of amyloid-ß (Aß) deposition in the hippocampus of a mouse model of Alzheimer's disease (AD) owing to a dysfunctional response of microglia to amyloid plaques, suggesting that TREM2 facilitates Aß clearance by microglia. TREM2/DAP12-mediated microglial response limits diffusion and toxicity of amyloid plaques by forming a protective barrier. However, the levels of Aß deposition in postmortem brains of NHD, where the biological function of the TREM2/DAP12 signaling pathway is completely lost, remain to be investigated. By immunohistochemistry, we studied the expression of Aß and phosphorylated tau (p-tau) in the frontal cortex and the hippocampus of five NHD cases. Although we identified several small Aß-immunoreactive spheroids, amyloid plaques were almost undetectable in NHD brains. We found a small number of p-tau-immunoreactive neurofibrillary tangle (NFT)-bearing neurons in NHD brains. Because AD pathology is less evident in NHD than the full-brown AD, it does not play an active role in the development of NHD.

18.
Intractable Rare Dis Res ; 6(4): 262-268, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29259854

RESUMO

Nasu-Hakola disease (NHD) is a rare autosomal recessive leukoencephalopathy caused by a loss-of-function mutation of either TYROBP (DAP12) or TREM2 expressed in microglia. A rare variant of the TREM2 gene encoding p.Arg47His causes a 3-fold increase in the risk for late-onset Alzheimer's disease (LOAD). A recent study demonstrated that a rare coding variant p.Ser209Phe in the ABI family member 3 (ABI3) gene, a regulator of actin cytoskeleton organization, confers risk of developing of LOAD, although the pattern of ABI3 expression in AD and NHD brains with relevance to microglial pathology remains to be characterized. We investigated the cell type-specific expression of ABI3 in the brains derived from four non-neurological controls (NC), ten AD and five NHD cases by immunohistochemistry. We identified an intense ABI3 immunoreactivity chiefly on a subset of microglia with ramified or amoeboid morphology located in the grey matter and the white matter of the frontal cortex and the hippocampus of NC, AD, and NHD cases. The immunolabeled area of ABI3-positive microglia was not significantly different among NC, AD, and NHD cases due to great variability from case to case. The clusters of ABI3-immunoreactive microglia were found exclusively in AD brains and they were associated with amyloid plaques. Although these observations do not actively support the view that ABI3-immunoreactive microglia play a central role in the development of leukoencephalopathy in NHD brains and the neurodegeneration in AD brains, the intense expression of ABI3 on microglia might regulate their migration under conditions of health and disease in the central nervous system (CNS).

19.
Nephrology (Carlton) ; 22(7): 562-565, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28621007

RESUMO

A fixed-dose formula that combines Ombitasvir (OBV), Paritaprevir (PTV) and Ritonavir (RTV) has been launched into the field of anti-HCV therapy in Japan for patients infected with HCV genotypes 1 and 2 in 2015. However, little is yet known as to the efficacy and safety of this novel therapy in patients on maintenance haemodialysis (HD). The present report describes a preliminary experience in 10 patients (five males and five females) who underwent maintenance HD. All of them had HCV genotype 1b, without having the resistance-associated variants at Y93 or L31 in the nonstructural proteins 5A (NS5A) region. After the treatment, eight patients successfully achieved virus eradication and sustained a virological response at 12 weeks (SVR12). In addition, mac-2 binding protein glycosylation isomer (M2BPGi), a biomarker for liver fibrosis, was reduced after the therapy. Two patients withdrew from the therapy due to the development of erythema multiforme and a strong drowsiness, respectively. These results suggest that triple therapy combining OBV, PTV and RTV is effective in achieving SVR12 in most of the HCV-infected patients on HD. In addition, this combination therapy contributed to retard the progression of liver fibrosis. However, we suggest that further trial will be required to establish its clinical efficacy and safety.


Assuntos
Anilidas/uso terapêutico , Antivirais/uso terapêutico , Carbamatos/uso terapêutico , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Compostos Macrocíclicos/uso terapêutico , Diálise Renal , Insuficiência Renal Crônica/terapia , Ritonavir/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Anilidas/efeitos adversos , Antivirais/efeitos adversos , Carbamatos/efeitos adversos , Ciclopropanos , Progressão da Doença , Combinação de Medicamentos , Composição de Medicamentos , Feminino , Genótipo , Hepacivirus/genética , Hepatite C/complicações , Hepatite C/diagnóstico , Hepatite C/virologia , Humanos , Japão , Lactamas Macrocíclicas , Cirrose Hepática/diagnóstico , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/virologia , Compostos Macrocíclicos/efeitos adversos , Masculino , Pessoa de Meia-Idade , Prolina/análogos & derivados , RNA Viral/genética , Diálise Renal/efeitos adversos , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/diagnóstico , Ritonavir/efeitos adversos , Sulfonamidas , Resposta Viral Sustentada , Fatores de Tempo , Resultado do Tratamento , Valina , Carga Viral
20.
Intractable Rare Dis Res ; 6(1): 50-54, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28357182

RESUMO

The G protein-coupled receptor 17 (GPR17), a Gi-coupled GPCR, acts as an intrinsic timer of oligodendrocyte differentiation and myelination. The expression of GPR17 is upregulated during differentiation of oligodendrocyte precursor cells (OPCs) into premyelinating oligodendrocytes (preoligodendrocytes), whereas it is markedly downregulated during terminal maturation of myelinating oligodendrocytes. Nasu-Hakola disease (NHD) is a rare autosomal recessive disorder caused by a loss-of-function mutation of either TYROBP (DAP12) or TREM2. Pathologically, the brains of NHD patients exhibit extensive demyelination designated leukoencephalopathy, astrogliosis, accumulation of axonal spheroids, and activation of microglia predominantly in the white matter of frontal and temporal lobes. Although GPR17 is a key regulator of oligodendrogenesis, a pathological role of GPR17 in NHD brains with relevance to development of leukoencephalopathy remains unknown. We studied the expression of GPR17 in five NHD brains and eight control brains by immunohistochemistry. We identified GPR17-immunoreactive preoligodendrocytes with a multipolar ramified morphology distributed in the white matter and the grey matter of all cases examined. However, we did not find statistically significant differences in the number of GPR17-expressing cells between NHD and control brains both in the white matter and the grey matter due to great variability from case to case. These observations do not support the view that GPR17-positive preoligodendrocytes play a central role in the development of leukoencephalopathy in NHD brains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA