Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Aging ; 4(5): 709-726, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609525

RESUMO

Understanding the molecular mechanisms of aging is crucial for enhancing healthy longevity. We conducted untargeted lipidomics across 13 biological samples from mice at various life stages (2, 12, 19 and 24 months) to explore the potential link between aging and lipid metabolism, considering sex (male or female) and microbiome (specific pathogen-free or germ-free) dependencies. By analyzing 2,704 molecules from 109 lipid subclasses, we characterized common and tissue-specific lipidome alterations associated with aging. For example, the levels of bis(monoacylglycero)phosphate containing polyunsaturated fatty acids increased in various organs during aging, whereas the levels of other phospholipids containing saturated and monounsaturated fatty acids decreased. In addition, we discovered age-dependent sulfonolipid accumulation, absent in germ-free mice, correlating with Alistipes abundance determined by 16S ribosomal RNA gene amplicon sequencing. In the male kidney, glycolipids such as galactosylceramides, galabiosylceramides (Gal2Cer), trihexosylceramides (Hex3Cer), and mono- and digalactosyldiacylglycerols were detected, with two lipid classes-Gal2Cer and Hex3Cer-being significantly enriched in aged mice. Integrated analysis of the kidney transcriptome revealed uridine diphosphate galactosyltransferase 8A (UGT8a), alkylglycerone phosphate synthase and fatty acyl-coenzyme A reductase 1 as potential enzymes responsible for the male-specific glycolipid biosynthesis in vivo, which would be relevant to sex dependency in kidney diseases. Inhibiting UGT8 reduced the levels of these glycolipids and the expression of inflammatory cytokines in the kidney. Our study provides a valuable resource for clarifying potential links between lipid metabolism and aging.


Assuntos
Envelhecimento , Lipidômica , Microbiota , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Metabolismo dos Lipídeos/genética , Masculino , Feminino , Microbiota/fisiologia , Fatores Sexuais , Bactérias/metabolismo , Rim/metabolismo , Transcriptoma , Glicolipídeos/metabolismo , Gangliosídeo Galactosiltransferase/genética , Gangliosídeo Galactosiltransferase/metabolismo
2.
Front Immunol ; 15: 1363704, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495886

RESUMO

BCL11B is a transcription factor with six C2H2-type zinc-finger domains. Studies in mice have shown that Bcl11b plays essential roles in T cell development. Several germline heterozygous BCL11B variants have been identified in human patients with inborn errors of immunity (IEI) patients. Among these, two de novo mis-sense variants cause asparagine (N) to lysine (K) replacement in distinct zinc-finger domains, BCL11BN441K and BCL11BN807K. To elucidate the pathogenesis of the BCL11BN807K variant, we generated a mouse model of BCL11BN807K by inserting the corresponding mutation, Bcl11bN797K, into the mouse genome. In Bcl11b+/N797K mice, the proportion of immature CD4-CD8+ single-positive thymocytes was increased, and the development of invariant natural killer cells was severely inhibited in a T-cell-intrinsic manner. Under competitive conditions, γδT cell development was outcompeted by control cells. Bcl11bN797K/N797K mice died within one day of birth. Recipient mice reconstituted with Bcl11bN797K/N797K fetal liver cells nearly lacked CD4+CD8+ double-positive thymocytes, which was consistent with the lack of their emergence in culture from Bcl11bN797K/N797K fetal liver progenitors. Interestingly, Bcl11bN797K/N797K progenitors gave rise to aberrant c-Kit+ and CD44+ cells both in vivo and in vitro. The increase in the proportion of immature CD8 single-positive thymocytes in the Bcl11bN797K mutants is caused, in part, by the inefficient activation of the Cd4 gene due to the attenuated function of the two Cd4 enhancers via distinct mechanisms. Therefore, we conclude that immunodeficient patient-derived Bcl11bN797K mutant mice elucidated a novel role for Bcl11b in driving the appropriate transition of CD4-CD8- into CD4+CD8+ thymocytes.


Assuntos
Proteínas Repressoras , Timócitos , Animais , Humanos , Camundongos , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Zinco
3.
Semin Immunopathol ; 45(4-6): 509-519, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38305897

RESUMO

The mucosal surface is in constant contact with foreign antigens and is regulated by unique mechanisms that are different from immune responses in the peripheral organs. For the last several decades, only adaptive immune cells such as helper T (Th) cells, Th1, Th2, or Th17 were targeted to study a wide variety of immune responses in the mucosal tissues. However, since their discovery, innate lymphoid cells (ILCs) have been attracting attention as a unique subset of immune cells that provide border defense with various functions and tissue specificity. ILCs are classified into different groups based on cell differentiation and functions. Group 3 innate lymphoid cells (ILC3s) are particularly in close proximity to mucosal surfaces and therefore have the opportunity to be exposed to a variety of bacteria including pathogenic bacteria. In recent years, studies have also provided much evidence that ILC3s contribute to disease pathogenesis as well as the defense of mucosal surfaces by rapidly responding to pathogens and coordinating other immune cells. As the counterpart of helper T cells, ILC3s together with other ILC subsets establish the immune balance between adaptive and innate immunity in protecting us from invasion or encounter with non-self-antigens for maintaining a complex homeostasis. In this review, we summarize recent advances in our understanding of ILCs, with a particular focus on the function of ILC3s in their involvement in bacterial infection and disease pathogenesis.


Assuntos
Imunidade Inata , Linfócitos , Humanos , Animais , Linfócitos/imunologia , Linfócitos/metabolismo , Suscetibilidade a Doenças , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Mucosa/imunologia , Mucosa/metabolismo , Imunidade nas Mucosas
4.
Cancers (Basel) ; 14(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35805039

RESUMO

Breast cancer is the most common cancer in women worldwide, and lung metastasis is one of the most frequent distant metastases. When breast cancer metastasizes to the lung, group 2 innate lymphoid cells (ILC2s) are thought to promote tumor growth via the activation of myeloid-derived suppressor cells (MDSCs), which are known to negatively regulate anticancer immune responses. However, it remains to be elucidated exactly how this ILC2-MDSC interaction is involved in tumor growth during metastases formation. Using a 4T1/LM4 breast cancer mouse model, we found that ILC2s were activated in both the micro- and macrometastatic regions, suggesting sustained activation throughout the metastatic cascades via IL-33/ST2 signaling. Consistent with IL-13 secretion from activated ILC2s, the frequencies of polymorphonuclear (PMN)- and monocytic (M)-MDSCs were also significantly elevated during the progression from micro- to macrometastatic cancer. However, the effects of ILC2-induced MDSC functionality on the microenvironment differed in a metastatic-stage-specific manner. Our findings indicate that ILC2s may induce the immunosuppressive functions of MDSCs during the later stages of metastasis. Concomitantly, ILC2 may instigate extracellular matrix remodeling by PMN-MDSC activation during the early stages of metastasis. These metastatic-stage-specific changes may contribute to metastatic tumor growth in the microenvironment of breast cancer lung metastasis.

5.
Front Immunol ; 13: 903459, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720414

RESUMO

Daikenchuto (DKT) is one of the most widely used Japanese herbal formulae for various gastrointestinal disorders. It consists of Zanthoxylum Fructus (Japanese pepper), Zingiberis Siccatum Rhizoma (processed ginger), Ginseng radix, and maltose powder. However, the use of DKT in clinical settings is still controversial due to the limited molecular evidence and largely unknown therapeutic effects. Here, we investigated the anti-inflammatory actions of DKT in the dextran sodium sulfate (DSS)-induced colitis model in mice. We observed that DKT remarkably attenuated the severity of experimental colitis while maintaining the members of the symbiotic microbiota such as family Lactobacillaceae and increasing levels of propionate, an immunomodulatory microbial metabolite, in the colon. DKT also protected colonic epithelial integrity by upregulating the fucosyltransferase gene Fut2 and the antimicrobial peptide gene Reg3g. More remarkably, DKT restored the reduced colonic group 3 innate lymphoid cells (ILC3s), mainly RORγthigh-ILC3s, in DSS-induced colitis. We further demonstrated that ILC3-deficient mice showed increased mortality during experimental colitis, suggesting that ILC3s play a protective function on colonic inflammation. These findings demonstrate that DKT possesses anti-inflammatory activity, partly via ILC3 function, to maintain the colonic microenvironment. Our study also provides insights into the molecular basis of herbal medicine effects, promotes more profound mechanistic studies towards herbal formulae and contributes to future drug development.


Assuntos
Colite , Zanthoxylum , Zingiberaceae , Animais , Anti-Inflamatórios/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Imunidade Inata , Japão , Linfócitos/metabolismo , Camundongos , Panax , Extratos Vegetais
6.
Front Immunol ; 12: 670632, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995407

RESUMO

Innate lymphoid cells (ILCs) are a group of innate immune cells that possess overlapping features with T cells, although they lack antigen-specific receptors. ILCs consist of five subsets-ILC1, ILC2, ILC3, lymphoid tissue inducer (LTi-like) cells, and natural killer (NK) cells. They have significant functions in mediating various immune responses, protecting mucosal barrier integrity and maintaining tissue homeostasis in the lung, skin, intestines, and liver. ILCs react immediately to signals from internal and external sources. Emerging evidence has revealed that dietary micronutrients, such as various vitamins and minerals can significantly modulate immune responses through ILCs and subsequently affect human health. It has been demonstrated that micronutrients control the development and proliferation of different types of ILCs. They are also potent immunoregulators in several autoimmune diseases and play vital roles in resolving local inflammation. Here, we summarize the interplay between several essential micronutrients and ILCs to maintain epithelial barrier functions in various mucosal tissues and discuss their limitations and potentials for promoting human health.


Assuntos
Dieta/métodos , Linfócitos/imunologia , Micronutrientes/metabolismo , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Homeostase , Humanos , Imunidade Inata , Vitamina A/metabolismo , Vitamina D/metabolismo
7.
Shock ; 55(3): 357-370, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32826811

RESUMO

ABSTRACT: Deregulation of the immune system in sepsis plays the central role in the pathogenesis of multiple organ failure including septic lung injury. Group 2 innate lymphoid cells (ILC2s) have emerged as a new player in regulating immune homeostasis in the lung; however, the role of ILC2s in lung injury in sepsis remains poorly understood. Here, we investigated temporal changes in stimulatory and inhibitory receptor expression and intracellular type 2 cytokine expression of ILC2s in the lung using a cecal ligation and puncture mouse sepsis model. We found that IL-13 production by ILC2s, which were predominately composed of the resident natural ILC2 subset rather than the migratory inflammatory ILC2 subset, was reduced in the lungs of sepsis mice on day 1 and gradually restored through day 7. Although the expression levels of ST2 and inducible T-cell costimulator (stimulatory receptors) were high, IL-13 production by ILC2s was reduced while showing high programmed cell death 1 (PD-1) (inhibitory receptor) expression. Furthermore, using IL-33 knockout mice, we have shown that IL-33 regulates the capacity of ILC2s to produce IL-13, possibly through the modulation of ST2 and PD-1 expression and signaling in the septic lung. To the best of our knowledge, this is the first report showing differential costimulatory/inhibitory receptor expression on ILC2s in a septic lung in the context of an IL-33/IL-13 pathway-mediated type 2 immune response in the progression and resolution of inflammation. Our present findings contribute to a better understanding of the underlying immunological mechanism of ILC2s and may fill the critical knowledge gap regarding immune homeostasis in the lung that hampers the development of new therapeutic strategies for sepsis-induced acute lung injury.


Assuntos
Interleucina-33/fisiologia , Linfócitos/imunologia , Receptor de Morte Celular Programada 1/imunologia , Sepse/imunologia , Animais , Feminino , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL
8.
Immunity ; 53(4): 699-701, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053325

RESUMO

In this issue of Immunity, Zeis et al. report the generation of a single-cell atlas of lung innate lymphoid cells (ILCs). Their findings provide insight into the how ILCs are locally maintained, revealing in situ differentiation and diversification as mechanisms of ILC renewal and function.


Assuntos
Imunidade Inata , Linfócitos , Diferenciação Celular , Pulmão , Células Progenitoras Linfoides
9.
Diagnostics (Basel) ; 10(10)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053762

RESUMO

Septic shock/severe sepsis is a deregulated host immune system response to infection that leads to life-threatening organ dysfunction. Lung inflammation as a form of acute lung injury (ALI) is often induced in septic shock. Whereas macrophages and neutrophils have been implicated as the principal immune cells regulating lung inflammation, group two innate lymphoid cells (ILC2s) have recently been identified as a new player regulating immune homeostasis. ILC2 is one of the three major ILC subsets (ILC1s, ILC2s, and ILC3s) comprised of newly identified innate immune cells. These cells are characterized by their ability to rapidly produce type 2 cytokines. ILC2s are predominant resident ILCs and, thereby, have the ability to respond to signals from damaged tissues. ILC2s regulate the immune response, and ILC2-derived type 2 cytokines may exert protective roles against sepsis-induced lung injury. This focused review not only provides readers with new insights into the signaling mechanisms by which ILC2s modulate sepsis-induced lung inflammation, but also proposes ILC2 as a novel therapeutic target for sepsis-induced ALI.

10.
Exp Mol Med ; 52(9): 1377-1382, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908209

RESUMO

The stomach has been thought to host few commensal bacteria because of the existence of barriers, such as gastric acid. However, recent culture-independent, sequencing-based microbial analysis has shown that the stomach also harbors a wide diversity of microbiota. Although the stomach immune system, especially innate lymphoid cells (ILCs), has not been well elucidated, recent studies have shown that group 2 ILCs (ILC2s) are the dominant subtype in the stomach of both humans and mice. Stomach ILC2s are unique in that their existence is dependent on stomach microbiota, in sharp contrast to the lack of an impact of commensal microbiota on ILC2s in other tissues. The microbiota dependency of stomach ILC2s is partly explained by their responsiveness to interleukin (IL)-7. Stomach ILC2s express significantly higher IL-7 receptor protein levels on their surface and proliferate more in response to IL-7 stimulation in vitro than small intestinal ILC2s. Consistently, the stomach expresses much higher IL-7 protein levels than the small intestine. IL-5 secreted from stomach ILC2s promotes immunoglobulin (Ig) A production by plasma B cells. In a murine model, stomach ILC2s are important in containing Helicobacter pylori infection, especially in the early phase of infection, by promoting IgA production.


Assuntos
Infecções por Helicobacter/imunologia , Helicobacter pylori/imunologia , Imunidade Inata , Linfócitos/imunologia , Microbiota/imunologia , Estômago/imunologia , Estômago/microbiologia , Animais , Suscetibilidade a Doenças/imunologia , Infecções por Helicobacter/microbiologia , Interações entre Hospedeiro e Microrganismos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade nas Mucosas , Linfócitos/metabolismo
11.
Microorganisms ; 8(9)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887435

RESUMO

Innate lymphoid cells (ILCs) are a recently discovered type of innate immune lymphocyte. They include three different groups classified by the nature of the transcription factors required for their development and by the cytokines they produce. ILCs mainly reside in tissues close to the mucosal barrier such as the respiratory and gastrointestinal tracts. Due to their close proximity to the mucosal surface, ILCs are exposed to a variety of both commensal and pathogenic bacteria. Under non-pathological conditions, ILCs have been shown to be important regulators for the maintenance of tissue homeostasis by mutual interactions with the microbiome. Besides these important functions at homeostasis, several studies have also provided emerging evidence that ILCs contribute to defense against pathogenic bacterial infection by responding rapidly to the pathogens as well as orchestrating other immune cells. In this review, we summarize recent advances in our understanding of the interactions of ILCs and bacteria, with special focus on the function of the different ILC subsets in bacterial infections.

12.
Immunity ; 52(4): 635-649.e4, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32240600

RESUMO

The intestinal microbiota shapes and directs immune development locally and systemically, but little is known about whether commensal microbes in the stomach can impact their immunological microenvironment. Here, we report that group 2 innate lymphoid cells (ILC2s) were the predominant ILC subset in the stomach and show that their homeostasis and effector functions were regulated by local commensal communities. Microbes elicited interleukin-7 (IL-7) and IL-33 production in the stomach, which in turn triggered the propagation and activation of ILC2. Stomach ILC2s were also rapidly induced following infection with Helicobacter pylori. ILC2-derived IL-5 resulted in the production of IgA, which coated stomach bacteria in both specific pathogen-free (SPF) and H. pylori-infected mice. Our study thus identifies ILC2-dependent IgA response that is regulated by the commensal microbiota, which is implicated in stomach protection by eliminating IgA-coated bacteria including pathogenic H. pylori.


Assuntos
Microbioma Gastrointestinal/imunologia , Infecções por Helicobacter/imunologia , Helicobacter pylori/patogenicidade , Imunoglobulina A/biossíntese , Interleucina-5/imunologia , Estômago/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Feminino , Regulação da Expressão Gênica , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Helicobacter pylori/crescimento & desenvolvimento , Helicobacter pylori/imunologia , Imunidade Humoral , Imunidade Inata , Interleucina-33/genética , Interleucina-33/imunologia , Interleucina-5/genética , Interleucina-7/genética , Interleucina-7/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cultura Primária de Células , Transdução de Sinais , Estômago/microbiologia , Simbiose/imunologia , Subpopulações de Linfócitos T/classificação
13.
Int Immunol ; 32(4): 259-272, 2020 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-31867619

RESUMO

Gain-of-function (GOF) mutations in the gene for signal transducer and activator of transcription 1 (STAT1) account for approximately one-half of patients with chronic mucocutaneous candidiasis (CMC) disease. Patients with GOF-STAT1 mutations display a broad variety of infectious and autoimmune manifestations in addition to CMC, and those with severe infections and/or autoimmunity have a poor prognosis. The establishment of safe and effective treatments based on a precise understanding of the molecular mechanisms of this disorder is required to improve patient care. To tackle this problem, we introduced the human R274Q GOF mutation into mice [GOF-Stat1 knock-in (GOF-Stat1R274Q)]. To investigate the immune responses, we focused on the small intestine (SI), which contains abundant Th17 cells. Stat1R274Q/R274Q mice showed excess phosphorylation of STAT1 in CD4+ T cells upon IFN-γ stimulation, consistent with the human phenotype in patients with the R274Q mutation. We identified two subpopulations of CD4+ T cells, those with 'normal' or 'high' level of basal STAT1 protein in Stat1R274Q/R274Q mice. Upon IFN-γ stimulation, the 'normal' level CD4+ T cells were more efficiently phosphorylated than those from WT mice, whereas the 'high' level CD4+ T cells were not, suggesting that the level of STAT1 protein does not directly correlate with the level of pSTAT1 in the SI. Inoculation of Stat1R274Q/R274Q mice with Candida albicans elicited decreased IL-17-producing CD4+RORγt+ cells. Stat1R274Q/R274Q mice also excreted larger amounts of C. albicans DNA in their feces than control mice. Under these conditions, there was up-regulation of T-bet in CD4+ T cells. GOF-Stat1R274Q mice thus should be a valuable model for functional analysis of this disorder.


Assuntos
Mutação com Ganho de Função/genética , Interleucina-17/imunologia , Fator de Transcrição STAT1/genética , Animais , Candida albicans/imunologia , Humanos , Interleucina-17/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT1/imunologia , Células Th17
14.
Front Immunol ; 10: 2432, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681315

RESUMO

The primary induction sites for intestinal IgA are the gut-associated lymphoid tissues (GALT), such as Peyer's patches (PPs) and isolated lymphoid follicles (ILFs). The commensal microbiota is known to contribute to IgA production in the gut; however, the role of dietary antigens in IgA production is poorly understood. To understand the effect of dietary antigens on IgA production, post-weaning mice were maintained on an elemental diet without any large immunogenic molecules. We found that dietary antigens contribute to IgA production in PPs through induction of follicular helper T cells and germinal center B cells. The role of dietary antigens in the PP responses was further confirmed by adding bovine serum albumin (BSA) into the elemental diet. Although dietary antigens are important for PP responses, they have fewer effects than the microbiota on the development and maturation of ILFs. Furthermore, we demonstrated that dietary antigens are essential for a normal antigen-specific IgA response to Salmonella typhi serovar Typhimurium infection. These results provide new insights into the role of dietary antigens in the regulation of mucosal immune responses.


Assuntos
Antígenos , Dieta , Centro Germinativo/imunologia , Nódulos Linfáticos Agregados , Animais , Suscetibilidade a Doenças , Microbioma Gastrointestinal , Centro Germinativo/metabolismo , Imunoglobulina A/imunologia , Imunoglobulina A Secretora/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Salmonella/imunologia , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo
15.
Kidney Int ; 92(1): 16-18, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28646991

RESUMO

Although acute peritonitis is a common and severe complication associated with peritoneal dialysis, the culture-based test used as the diagnostic criterion for this disease is often too slow to allow appropriate point-of-care diagnosis of specific bacterial infection. To address this problem, Zhang et al. report the efficacy of a novel set of immune biomarkers derived from a machine-learning algorithm applied to patient data. This fingerprint could predict major pathogenic causes of peritonitis.


Assuntos
Diálise Peritoneal , Peritonite , Biomarcadores , Humanos
16.
J Immunol ; 196(11): 4731-8, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27183613

RESUMO

Group 3 innate lymphoid cells (ILC3) actively participate in mucosal defense and homeostasis through prompt secretion of IL-17A, IL-22, and IFN-γ. Reports identify two ILC3 lineages: a CCR6(+)T-bet(-) subset that appears early in embryonic development and promotes lymphoid organogenesis and a CCR6(-)T-bet(+) subset that emerges after microbial colonization and harbors NKp46(+) ILC3. We demonstrate that NKp46 expression in the ILC3 subset is highly unstable. Cell fate mapping using Ncr1(CreGFP) × Rosa26(RFP) mice revealed the existence of an intestinal RFP(+) ILC3 subset (Ncr1(FM)) lacking NKp46 expression at the transcript and protein levels. Ncr1(FM) ILC3 produced more IL-22 and were distinguishable from NKp46(+) ILC3 by differential CD117, CD49a, DNAX accessory molecule-1, and, surprisingly, CCR6 expression. Ncr1(FM) ILC3 emerged after birth and persisted in adult mice following broad-spectrum antibiotic treatment. These results identify an unexpected phenotypic instability within NKp46(+) ILC3 that suggests a major role for environmental signals in tuning ILC3 functional plasticity.


Assuntos
Antígenos Ly/imunologia , Imunidade Inata/imunologia , Intestinos/imunologia , Linfócitos/imunologia , Receptor 1 Desencadeador da Citotoxicidade Natural/imunologia , Animais , Células Cultivadas , Intestinos/citologia , Linfócitos/citologia , Camundongos , Camundongos Transgênicos , Fenótipo
17.
Int Immunol ; 28(1): 29-34, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26462712

RESUMO

Innate lymphoid cells (ILCs) are a newly identified subset of innate cells that play fundamentally crucial roles for early immune defense at mucosal and non-mucosal sites. ILCs consist of ILC1s, ILC2s and ILC3s, which each have distinct transcription factors controlling their development and function. Interestingly, each of the ILC subsets represents the innate counterparts of CD4(+) helper T-cell subsets T(h1), T(h2) and T(h17) on the basis of transcriptional regulation. ILC1s that produce IFN-γ or TNF-α, ILC2s that produce T(h2)-type cytokines mainly such as IL-5 or IL-13 and ILC3s have been recently reported and reviewed in terms of IL-22- or IL-17-producing function and cell development. However, in this relatively new field, it remains likely that additional functional and regulatory mechanisms remain to be explored. More recent findings show that ILC3s are regulated by RORγt, which plays an important role for the mucosal barrier and surface protection against pathogenic bacterial infection. ILC3s might cooperate with other cells (e.g. T cells or dendritic cells) directly or indirectly, and subsequently ILC3s have impact on tissues with prompt regulation. Especially, ILC3s in mucosal site are well known to protect the intestinal surface barrier through inducible anti-microbial peptides via IL-22. Here, I will summarize and discuss the roles, function and heterogeneity of ILC3s in mucosal tissues.


Assuntos
Infecções Bacterianas/imunologia , Interleucina-17/metabolismo , Interleucinas/metabolismo , Mucosa Intestinal/imunologia , Linfócitos/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Pele/imunologia , Animais , Humanos , Imunidade Inata , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Pele/microbiologia , Pele/patologia , Interleucina 22
18.
Immunity ; 41(5): 776-88, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25456160

RESUMO

Interleukin-22 (IL-22) plays a critical role in mucosal defense, although the molecular mechanisms that ensure IL-22 tissue distribution remain poorly understood. We show that the CXCL16-CXCR6 chemokine-chemokine receptor axis regulated group 3 innate lymphoid cell (ILC3) diversity and function. CXCL16 was constitutively expressed by CX3CR1(+) intestinal dendritic cells (DCs) and coexpressed with IL-23 after Citrobacter rodentium infection. Intestinal ILC3s expressed CXCR6 and its ablation generated a selective loss of the NKp46(+) ILC3 subset, a depletion of intestinal IL-22, and the inability to control C. rodentium infection. CD4(+) ILC3s were unaffected by CXCR6 deficiency and remained clustered within lymphoid follicles. In contrast, the lamina propria of Cxcr6(-/-) mice was devoid of ILC3s. The loss of ILC3-dependent IL-22 epithelial stimulation reduced antimicrobial peptide expression that explained the sensitivity of Cxcr6(-/-) mice to C. rodentium. Our results delineate a critical CXCL16-CXCR6 crosstalk that coordinates the intestinal topography of IL-22 secretion required for mucosal defense.


Assuntos
Quimiocina CXCL6/imunologia , Infecções por Enterobacteriaceae/imunologia , Interleucinas/imunologia , Mucosa/imunologia , Receptores CXCR/imunologia , Animais , Antígenos Ly/biossíntese , Linfócitos T CD4-Positivos/imunologia , Receptor 1 de Quimiocina CX3C , Quimiocina CXCL16 , Quimiocina CXCL6/biossíntese , Citrobacter rodentium/imunologia , Células Dendríticas/imunologia , Interleucina-23/biossíntese , Interleucinas/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor 1 Desencadeador da Citotoxicidade Natural/biossíntese , Receptores CXCR/biossíntese , Receptores CXCR/genética , Receptores CXCR6 , Receptores de Quimiocinas/biossíntese , Receptores de Quimiocinas/imunologia , Interleucina 22
19.
Eur J Immunol ; 44(11): 3380-91, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25142413

RESUMO

To study gene functions specifically in NKp46+ cells we developed novel Cre mice allowing for conditional gene targeting in cells expressing Ncr1 (encoding NKp46). We generated transgenic Ncr1(greenCre) mice carrying an EGFPcre fusion under the control of a proximal Ncr1 promoter that faithfully directed EGFPcre expression to NKp46+ cells from lymphoid and nonlymphoid tissues. This approach allowed for direct detection of Cre-expressing NKp46+ cells via their GFP signature by flow cytometry and histology. Cre was functional as evidenced by the NKp46+ cell-specific expression of RFP in Ncr1(greenCre) Rosa-dtRFP reporter mice. We generated Ncr1(greenCre) Il2rg(fl/fl) mice that lack NKp46+ cells in an otherwise intact hematopoietic environment. Il2rg encodes the common gamma chain (γc ), which is an essential receptor subunit for cytokines (IL-2, -4, -7, -9, -15, and -21) that stimulate lymphocyte development and function. In Ncr1(greenCre) Il2rg(fl/fl) mice, NK cells are severely reduced and the few remaining NKp46+ cells escaping γc deletion failed to express GFP. Using this new NK-cell-deficient model, we demonstrate that the homeostasis of NKp46+ cells from all tissues (including the recently described intraepithelial ILC1 subset) requires Il2rg. Finally, Ncr1(greenCre) Il2rg(fl/fl) mice are unable to reject B16 lung metastases demonstrating the essential role of NKp46+ cells in antimelanoma immune responses.


Assuntos
Antígenos Ly/genética , Células Matadoras Naturais/imunologia , Neoplasias Pulmonares/secundário , Melanoma Experimental/patologia , Receptor 1 Desencadeador da Citotoxicidade Natural/genética , Animais , Antígenos Ly/biossíntese , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteínas de Fluorescência Verde/genética , Subunidade gama Comum de Receptores de Interleucina/genética , Neoplasias Pulmonares/imunologia , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor 1 Desencadeador da Citotoxicidade Natural/biossíntese
20.
J Exp Med ; 211(2): 199-208, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24419270

RESUMO

Group 3 innate lymphoid cells (ILC3) include IL-22-producing NKp46(+) cells and IL-17A/IL-22-producing CD4(+) lymphoid tissue inducerlike cells that express RORγt and are implicated in protective immunity at mucosal surfaces. Whereas the transcription factor Gata3 is essential for T cell and ILC2 development from hematopoietic stem cells (HSCs) and for IL-5 and IL-13 production by T cells and ILC2, the role for Gata3 in the generation or function of other ILC subsets is not known. We found that abundant GATA-3 protein is expressed in mucosa-associated ILC3 subsets with levels intermediate between mature B cells and ILC2. Chimeric mice generated with Gata3-deficient fetal liver hematopoietic precursors lack all intestinal RORγt(+) ILC3 subsets, and these mice show defective production of IL-22 early after infection with the intestinal pathogen Citrobacter rodentium, leading to impaired survival. Further analyses demonstrated that ILC3 development requires cell-intrinsic Gata3 expression in fetal liver hematopoietic precursors. Our results demonstrate that Gata3 plays a generalized role in ILC lineage determination and is critical for the development of gut RORγt(+) ILC3 subsets that maintain mucosal barrier homeostasis. These results further extend the paradigm of Gata3-dependent regulation of diversified innate ILC and adaptive T cell subsets.


Assuntos
Fator de Transcrição GATA3/imunologia , Imunidade Inata , Subpopulações de Linfócitos/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Imunidade Adaptativa , Animais , Citrobacter rodentium , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Infecções por Enterobacteriaceae/imunologia , Feminino , Desenvolvimento Fetal/imunologia , Fator de Transcrição GATA3/deficiência , Fator de Transcrição GATA3/genética , Imunidade nas Mucosas , Interleucinas/metabolismo , Fígado/citologia , Fígado/embriologia , Fígado/imunologia , Subpopulações de Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Gravidez , Interleucina 22
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...