Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mitochondrial DNA B Resour ; 8(12): 1311-1315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173920

RESUMO

The authors sequenced the complete mitochondrial (mt) genomes of the band-legged ground cricket (Dianemobius fascipes nigrofasciatus Matsumura, 1904) and a temperate form of the lawn ground cricket (Polionemobius taprobanensis Walker, 1869), collected in Japan. The length of the mt genome sequences was 15,354 bp in D. fascipes nigrofasciatus and 16,063 bp in P. taprobanensis. Annotation of the mt genome sequences revealed 13 protein-coding genes, two rRNA genes, and 22 tRNA genes. The orientation of the genes was the same as in other Grylloidea species, and the order was the same as in other Trigonidiidae species. In our phylogenetic analysis, D. fascipes nigrofasciatus formed a clade with D. fascipes collected in China, and the temperate form of P. taprobanensis formed a clade with P. taprobanensis collected in China. Comparison of the numbers of positions with different amino acid residues encoded by the protein-coding genes implied the separate species status of each member of each of the two pairs of ground crickets. The mt genome sequences of D. fascipes nigrofasciatus and P. taprobanensis will contribute to phylogenetic and taxonomic studies of the Trigonidiidae.

2.
Genome Res ; 31(11): 2069-2079, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34675069

RESUMO

Dosage compensation (DC) on the X Chromosome counteracts the deleterious effects of gene loss on the Y Chromosome. However, DC is not efficient if the X Chromosome also degenerates. This indeed occurs in Drosophila miranda, in which both the neo-Y and the neo-X are under accelerated pseudogenization. To examine the generality of this pattern, we investigated the evolution of two additional neo-sex chromosomes that emerged independently in D. albomicans and D. americana and reanalyzed neo-sex chromosome evolution in D. miranda Comparative genomic and transcriptomic analyses revealed that the pseudogenization rate on the neo-X is also accelerated in D. albomicans and D. americana although to a lesser extent than in D. miranda In males, neo-X-linked genes whose neo-Y-linked homologs are pseudogenized tended to be up-regulated more than those whose neo-Y-linked homologs remain functional. Moreover, genes under strong functional constraint and genes highly expressed in the testis tended to remain functional on the neo-X and neo-Y, respectively. Focusing on the D. miranda and D. albomicans neo-sex chromosomes that emerged independently from the same autosome, we further found that the same genes tend to become pseudogenized in parallel on the neo-Y. These genes include Idgf6 and JhI-26, which may be unnecessary or even harmful in males. Our results indicate that neo-sex chromosomes in Drosophila share a common evolutionary trajectory after their emergence, which may prevent sex chromosomes from being an evolutionary dead end.


Assuntos
Drosophila , Cromossomos Sexuais , Animais , Mecanismo Genético de Compensação de Dose , Drosophila/genética , Evolução Molecular , Masculino , Cromossomos Sexuais/genética , Cromossomo X/genética , Cromossomo Y/genética
3.
Front Genet ; 11: 546106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193621

RESUMO

The human hepatoma-derived HuH-7 cell line and its derivatives (Huh7.5 and Huh7.5.1) have been widely used as a convenient experimental substitute for primary hepatocytes. In particular, these cell lines represent host cells suitable for propagating the hepatitis C virus (HCV) in vitro. The Huh7.5.1-8 cell line, a subline of Huh7.5.1, can propagate HCV more efficiently than its parental cells. To provide genomic information for cells' quality control, we performed whole-genome sequencing of HuH-7 and Huh7.5.1-8 and identified their characteristic genomic deletions, some of which are applicable to an in-house test for cell authentication. Among the genes related to HCV infection and replication, 53 genes were found to carry missense or loss-of-function mutations likely specific to the HuH-7 and/or Huh7.5.1-8. Eight genes, including DDX58 (RIG-I), BAX, EP300, and SPP1 (osteopontin), contained mutations observed only in Huh7.5.1-8 or mutations with higher frequency in Huh7.5.1-8. These mutations might be relevant to phenotypic differences between the two cell lines and may also serve as genetic markers to distinguish Huh7.5.1-8 cells from the ancestral HuH-7 cells.

4.
Am J Primatol ; 80(7): e22882, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29896810

RESUMO

Simian retrovirus (SRV) is a type-D betaretrovirus infectious to the Old World monkeys causing a variety of symptoms. SRVs are also present in the Old World monkey genomes as endogenous forms, which are referred to as Simian endogenous retroviruses (SERVs). Although many SERV sequences have been identified in Cercopithecinae genomes, with potential of encoding all functional genes, the distribution of SERVs in genomes and evolutionary relationship between exogeneous SRVs and SERVs remains unclear. In this study, we comprehensively investigated seven draft genome sequences of the Old World monkeys, and identified a novel cluster of SERVs in the two Rhinopithecus (R. roxellana and R. bieti) genomes, which belong to the Colobinae subfamily. The Rhinopithecus genomes harbored higher copy numbers of SERVs than the Cercopithecinae genomes. A reconstructed phylogenetic tree showed that the Colobinae SERVs formed a distinct cluster from SRVs and Cercopithecinae SERVs, and more closely related to exogenous SRVs than Cercopithecinae SERVs. Three radical amino acid substitutions specific to Cercopithecinae SERVs, which potentially affect the infectious ability of SERVs, were also identified in the proviral envelope protein. In addition, we found many integration events of SERVs were genus- or species-specific, suggesting the recent activity of SERVs in the Old World monkey genomes. The results suggest that SERVs in Cercopithecinae and Colobinae monkeys were endogenized after the divergence of subfamilies and do not transmit across subfamilies. Our findings also support the hypothesis that Colobinae SERVs are direct ancestors of SRV-6, which has a different origin from the other exogenous SRVs. These findings shed novel insight into the evolutionary history of SERVs, and may help to understand the process of endogenization of SRVs.


Assuntos
Cercopithecinae/genética , Colobinae/genética , Retrovirus Endógenos/isolamento & purificação , Sequência de Aminoácidos , Animais , Cercopithecinae/virologia , Colobinae/virologia , Retrovirus Endógenos/classificação , Retrovirus Endógenos/genética , Genoma , Genoma Viral , Filogenia , Retrovirus dos Símios
5.
Mol Biol Evol ; 33(2): 367-74, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26494844

RESUMO

Researchers studying Y chromosome evolution have drawn attention to neo-Y chromosomes in Drosophila species due to their resembling the initial stage of Y chromosome evolution. In the studies of neo-Y chromosome of Drosophila miranda, the extremely low genetic diversity observed suggested various modes of natural selection acting on the nonrecombining genome. However, alternative possibility may come from its peculiar origin from a single chromosomal fusion event with male achiasmy, which potentially caused and maintained the low genetic diversity of the neo-Y chromosome. Here, we report a real case where a neo-Y chromosome is in transition from an autosome to a typical Y chromosome. The neo-Y chromosome of Drosophila albomicans harbored a rich genetic diversity comparable to its gametologous neo-X chromosome and an autosome in the same genome. Analyzing sequence variations in 53 genes and measuring recombination rates between pairs of loci by cross experiments, we elucidated the evolutionary scenario of the neo-Y chromosome of D. albomicans having high genetic diversity without assuming selective force, i.e., it originated from a single chromosomal fusion event, experienced meiotic recombination during the initial stage of evolution and diverged from neo-X chromosome by the suppression of recombination tens or a few hundreds of thousand years ago. Consequently, the observed high genetic diversity on the neo-Y chromosome suggested a strong effect of meiotic recombination to introduce genetic variations into the newly arisen sex chromosome.


Assuntos
Drosophila/genética , Evolução Molecular , Variação Genética , Recombinação Genética , Cromossomo Y , Animais , Genes de Insetos , Meiose/genética , Seleção Genética , Mutação Silenciosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA