Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 94(29): 10435-10442, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35848818

RESUMO

The need to find a rapid and worthwhile technique for the in situ detection of the content of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in Cannabis sativa L. is an ever-increasing problem in the forensic field. Among all the techniques for the detection of cannabinoids, Raman spectroscopy can be identified as the most cost-effective, fast, noninvasive, and nondestructive. In this study, 42 different samples were analyzed using Raman spectroscopy with 1064 nm excitation wavelength. The use of an IR wavelength laser showed the possibility to clearly identify THC and CBD in fresh samples, without any further processing, knocking out the contribution of the fluorescence generated by visible and near-IR sources. The results allow assigning all the Raman features in THC- and CBD-rich natural samples. The multivariate analysis underlines the high reproducibility of the spectra and the possibility to distinguish immediately the Raman spectra of the two cannabinoid species. Furthermore, the ratio between the Raman bands at 1295/1440 and 1623/1663 cm-1 is identified as an immediate test parameter to evaluate the THC content in the samples.


Assuntos
Canabidiol , Canabinoides , Cannabis , Canabinoides/análise , Cannabis/química , Dronabinol/análise , Reprodutibilidade dos Testes , Análise Espectral Raman
2.
Nanomaterials (Basel) ; 11(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34361209

RESUMO

CsPbI3 inorganic perovskite is synthesized by a solvent-free, solid-state reaction, and its structural and optical properties can be deeply investigated using a multi-technique approach. X-ray Diffraction (XRD) and Raman measurements, optical absorption, steady-time and time-resolved luminescence, as well as High-Resolution Transmission Electron Microscopy (HRTEM) imaging, were exploited to understand phase evolution as a function of synthesis time length. Nanoparticles with multiple, well-defined crystalline domains of different crystalline phases were observed, usually surrounded by a thin, amorphous/out-of-axis shell. By increasing the synthesis time length, in addition to the pure α phase, which was rapidly converted into the δ phase at room temperature, a secondary phase, Cs4PbI6, was observed, together with the 715 nm-emitting γ phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA