Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(10): 4410-4421, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35234474

RESUMO

It is desirable to rationally engineer plasmonic metal nanostructures with sets of structural parameters that lead to specific functions. However, it is still challenging to predict the nanostructured outcome of a synthesis reaction by design because not only the exact kinetic path for the structural evolution is very complicated but also the relationships among various functional and structural parameters are often tangled. It is necessary to deconvolute the structure-function relationships and understand the co-evolution of structural and functional parameters as the nanostructures grow. DNA is a programable biomolecular capping ligand that was shown to be capable of precisely controlling the evolution of metal nanostructures. In this study, we systematically analyzed the evolution of two structural parameters and several functional parameters in the growth of Au-Ag nanostructures controlled by two DNA sequences. We deconvoluted the contributions from the two structural parameters in affecting the plasmonic properties in different kinetic and geometric domains. We further designed new nanostructures by exchanging DNA sequences in the growth environment, which also changed their evolution pathways. The resulting structural and functional parameters could be predictively tuned by the timing of the exchange. This study demonstrates the powerful toolbox provided by programable biomolecules in producing novel nanostructures in a predictable manner. It also shows that by understanding the kinetic evolution of the structural parameters and their relationships with the function parameters, it is possible to design the precise combinations of structural and functional parameters in the nanostructured products.


Assuntos
Nanoestruturas , DNA/química , Ouro/química , Cinética , Nanoestruturas/química
2.
Small ; 15(26): e1900975, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31074939

RESUMO

The discovery and elucidation of genetic codes has profoundly changed not only biology but also many fields of science and engineering. The fundamental building blocks of life comprises of four simple deoxyribonucleotides and yet their combinations serve as the carrier of genetic information that encodes for proteins that can carry out many biological functions due to their unique functionalities. Inspired by nature, the functionalities of DNA molecules have been used as a capping ligand for controlling morphology of nanomaterials, and such a control is sequence dependent, which translates into distinct physical and chemical properties of resulting nanoparticles. Herein, an overview on the use of DNA as engineered codes for controlling the morphology of metal nanoparticles, such as gold, silver, and Pd-Au bimetallic nanoparticles is provided. Fundamental insights into rules governing DNA controlled growth mechanisms are also summarized, based on understanding of the affinity of the DNA nucleobases to various metals, the effect of combination of nucleobases, functional modification of DNA, the secondary structures of DNA, and the properties of the seed employed. The resulting physical and chemical properties of these DNA encoded nanomaterials are also reviewed, while perspectives into the future directions of DNA-mediated nanoparticle synthesis are provided.


Assuntos
DNA/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Nanotecnologia , Conformação de Ácido Nucleico
3.
J Am Chem Soc ; 140(50): 17656-17665, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30427666

RESUMO

Spatial and temporal distributions of metal ions in vitro and in vivo are crucial in our understanding of the roles of metal ions in biological systems, and yet there is a very limited number of methods to probe metal ions with high space and time resolution, especially in vivo. To overcome this limitation, we report a Zn2+-specific near-infrared (NIR) DNAzyme nanoprobe for real-time metal ion tracking with spatiotemporal control in early embryos and larvae of zebrafish. By conjugating photocaged DNAzymes onto lanthanide-doped upconversion nanoparticles (UCNPs), we have achieved upconversion of a deep tissue penetrating NIR 980 nm light into 365 nm emission. The UV photon then efficiently photodecages a substrate strand containing a nitrobenzyl group at the 2'-OH of adenosine ribonucleotide, allowing enzymatic cleavage by a complementary DNA strand containing a Zn2+-selective DNAzyme. The product containing a visible FAM fluorophore that is initially quenched by BHQ1 and Dabcyl quenchers is released after cleavage, resulting in higher fluorescent signals. The DNAzyme-UCNP probe enables Zn2+ sensing by exciting in the NIR biological imaging window in both living cells and zebrafish embryos and detecting in the visible region. In this study, we introduce a platform that can be used to understand the Zn2+ distribution with spatiotemporal control, thereby giving insights into the dynamical Zn2+ ion distribution in intracellular and in vivo models.


Assuntos
DNA Catalítico/química , Corantes Fluorescentes/química , Nanopartículas/química , Zinco/análise , Alcanossulfonatos/química , Alcanossulfonatos/toxicidade , Animais , Compostos Azo/química , Compostos Azo/toxicidade , Sequência de Bases , DNA Catalítico/síntese química , DNA Catalítico/toxicidade , Fluoresceínas/química , Fluoresceínas/toxicidade , Fluorescência , Corantes Fluorescentes/toxicidade , Fluoretos/química , Fluoretos/toxicidade , Células HeLa , Humanos , Raios Infravermelhos , Microscopia Confocal , Microscopia de Fluorescência , Nanopartículas/efeitos da radiação , Nanopartículas/toxicidade , Túlio/química , Túlio/toxicidade , Itérbio/química , Itérbio/toxicidade , Ítrio/química , Ítrio/toxicidade , Peixe-Zebra
4.
Curr Opin Colloid Interface Sci ; 38: 158-169, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31289450

RESUMO

Controlling morphologies of nanomaterials such as their shapes and surface features has been a major endeavor in the field of nanoscale science and engineering, because the morphology is a major determining factor for functional properties of nanomaterials. Compared with conventional capping ligands based on organic molecules or polymers, the programmability of biomolecules makes them attractive alternatives for morphology-controlled nanomaterials synthesis. Towards the goal of predictable control of the synthesis, many studies have been performed on using different sequences of biomolecules to generate specific nanomaterial morphology. In this review, we summarize recent studies in the past few years on using DNA and peptide sequences to control inorganic nanomaterial morphologies, focusing on both case studies and mechanistic investigations. The functional properties resulting from such a sequence-specific control are also discussed, along with strengths and limitations of different approaches to achieving the goal.

5.
J Am Chem Soc ; 139(48): 17225-17228, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29028325

RESUMO

DNA aptamers are a powerful class of molecules for sensing targets, but have been limited when applied to imaging in living animals because most aptamer probes are fluorescence-based, which limits imaging penetration depth. Photoacoustic (PA) imaging emerged as an alternative to MRI and X-ray tomography in biomedical imaging, due to its ability to afford high-resolution images at depths in the cm range. Despite its promise, PA imaging is limited by a lack of strategies to design selective and activatable probes for targets. To overcome this limitation, we report design and demonstration of PA probes based on DNA aptamers that can hybridize to DNA strands conjugated to a near-infrared fluorophore/quencher pair (IRDye 800CW/IRDye QC-1) with efficient contact quenching. Binding of the target triggered a release of the DNA strand with the quencher and thus relief of the contact quenching, resulting in a change of the PA signal ratio at 780/725 nm. Using thrombin as a model, a relationship was established between the thrombin concentrations and the PA ratio, with a dynamic range of 0-1000 nM and a limit of detection of 112 nM. Finally, in vivo PA imaging studies showed that the PA ratio increased significantly 45 min after injection of thrombin but not with injection of PBS as a vehicle control, demonstrating the first aptamer-based activatable PA probe for advanced molecular imaging in living mice. Since in vitro selection can obtain aptamers selective for many targets, the design demonstrated can be applied for PA imaging of a number of targets.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , DNA/metabolismo , Imagem Molecular/métodos , Técnicas Fotoacústicas/métodos , Animais , Corantes Fluorescentes/metabolismo , Raios Infravermelhos , Camundongos , Sondas Moleculares/metabolismo , Trombina/metabolismo
6.
Angew Chem Int Ed Engl ; 56(30): 8721-8725, 2017 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-28557357

RESUMO

DNAzymes are a promising platform for metal ion detection, and a few DNAzyme-based sensors have been reported to detect metal ions inside cells. However, these methods required an influx of metal ions to increase their concentrations for detection. To address this major issue, the design of a catalytic hairpin assembly (CHA) reaction to amplify the signal from photocaged Na+ -specific DNAzyme to detect endogenous Na+ inside cells is reported. Upon light activation and in the presence of Na+ , the NaA43 DNAzyme cleaves its substrate strand and releases a product strand, which becomes an initiator that trigger the subsequent CHA amplification reaction. This strategy allows detection of endogenous Na+ inside cells, which has been demonstrated by both fluorescent imaging of individual cells and flow cytometry of the whole cell population. This method can be generally applied to detect other endogenous metal ions and thus contribute to deeper understanding of the role of metal ions in biological systems.


Assuntos
DNA Catalítico/metabolismo , Corantes Fluorescentes/metabolismo , Imagem Óptica , Sódio/química , Biocatálise , DNA Catalítico/química , Corantes Fluorescentes/química , Células HeLa , Humanos , Íons/química , Íons/metabolismo , Sódio/metabolismo , Espectrometria de Fluorescência
7.
Angew Chem Int Ed Engl ; 56(24): 6798-6802, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28471018

RESUMO

DNAzymes have enjoyed success as metal ion sensors outside cells. Their susceptibility to metal-dependent cleavage during delivery into cells has limited their intracellular applications. To overcome this limitation, a near-infrared (NIR) photothermal activation method is presented for controlling DNAzyme activity in living cells. The system consists of a three-stranded DNAzyme precursor (TSDP), the hybridization of which prevents the DNAzyme from being active. After conjugating the TSDP onto gold nanoshells and upon NIR illumination, the increased temperature dehybridizes the TSDP to release the active DNAzyme, which then carries out metal-ion-dependent cleavage, resulting in releasing the cleaved product containing a fluorophore. Using this construct, detecting Zn2+ in living HeLa cells is demonstrated. This method has expanded the DNAzyme versatility for detecting metal ions in biological systems under NIR light that exhibits lower phototoxicity and higher tissue penetration ability.


Assuntos
DNA Catalítico/metabolismo , Ouro/química , Raios Infravermelhos , Nanoconchas/química , Temperatura , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Células HeLa , Humanos , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
8.
J Am Chem Soc ; 138(50): 16542-16548, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-27935691

RESUMO

Recent reports have shown that different DNA sequences can mediate the control of shapes and surface properties of nanoparticles. However, all previous studies have involved only monometallic particles, most of which were gold nanoparticles. Controlling the shape of bimetallic nanoparticles is more challenging, and there is little research into the use of DNA-based ligands for their morphological control. We report the DNA-templated synthesis of Pd-Au bimetallic nanoparticles starting from palladium nanocube seeds. The presence of different homo-oligomer DNA sequences containing 10 deoxy-ribonucleotides of thymine, adenine, cytosine, or guanine results in the growth of four distinct morphologies. Through detailed kinetic studies by absorption spectroscopy, scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM), we have determined the role of DNA in controlling Pd-Au nanoparticle growth morphologies. One major function of DNA is affecting various properties of the incoming metal atoms, including their diffusion and deposition on the Pd nanocube seed. Interestingly, nanoparticle growth in the presence of A10 follows an aggregative growth mechanism that is unique when compared to the other base oligomers. These findings demonstrate that DNA can allow for programmable control of bimetallic nanoparticle morphologies, resulting in more complex hybrid materials with different plasmonic properties. The capability to finely tune multimetallic nanoparticle morphology stems from the versatile structure that is unique to DNA in comparison to conventionally used capping agents in colloidal nanomaterial synthesis.


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química , Sequência de Bases , DNA/genética , Cinética , Paládio/química
9.
J Am Chem Soc ; 137(45): 14456-64, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26492515

RESUMO

Although shapes and surface characteristics of nanoparticles are known to play important roles in defining their properties, it remains challenging to fine-tune the morphologies systematically and predictably. Recently, we have shown that DNA molecules can serve as programmable ligands to fine-tune the morphologies of nanomaterials. Despite this discovery, the mechanism of how the morphology can be controlled and the roles of the DNA molecules in contributing to such control are not understood. We herein report mechanistic investigation of DNA-mediated morphological evolution of gold nanoprism seeds into nonagon, hexagon, and six-pointed stars, some of which display rough surfaces, in the presence of homo-oligomeric T30, G20, C30, and A30. The growth, elucidated through various analytical methods including UV-vis, SEM, TEM, zeta potential, fluorescence, and cyclic voltammetry, is found to occur in two stages: control of shape, followed by control of thickness. A careful analysis of diffraction patterns of the nanoprism seeds as well as the resulting intermediate shapes by TEM allowed us to deduce the exact sequence of shape evolution. Through systematic comparison of the nanoparticle growth process, the DNA molecules were found to play important roles by influencing diffusion of the Au precursor to the seed and modulating the growth through differences in DNA desorption, density, and mobility on the seed surface. These insights into the mechanism of DNA-guided control of nanomaterial morphologies provide deeper understanding of the interactions between the DNA and nanomaterials and will allow better control of the shapes and surface properties of many nanomaterials.


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química , Difusão , Tamanho da Partícula , Propriedades de Superfície
10.
Angew Chem Int Ed Engl ; 54(28): 8114-8, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26096755

RESUMO

Systematically controlling the morphology of nanoparticles, especially those growing from gold nanorod (AuNR) seeds, are underexplored; however, the AuNR and its related morphologies have shown promises in many applications. Herein we report the use of programmable DNA sequences to control AuNR overgrowth, resulting in gold nanoparticles varying from nanodumbbell to nanooctahedron, as well as shapes in between, with high yield and reproducibility. Kinetic studies revealed two representative pathways for the shape control evolving into distinct nanostructures. Furthermore, the geometric and plasmonic properties of the gold nanoparticles could be precisely controlled by adjusting the base compositions of DNA sequences or by introducing phosphorothioate modifications in the DNA. As a result, the surface plasmon resonance (SPR) peaks of the nanoparticles can be fine-tuned in a wide range, from visible to second near-infrared (NIR-II) region beyond 1000 nm.


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química , Nanoestruturas/química , Nanotubos/química , Ressonância de Plasmônio de Superfície/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...