Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; 88(5): 954-69, 2003 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-12616534

RESUMO

Matrix vesicles released by epiphyseal growth plate chondrocytes are known to contain a significant quantity of labile Zn(2+). Zonal analysis of chicken metatarsal bones showed that the resting/proliferative region of the growth plate contained high levels of Zn(2+) with significantly lower levels in the hypertrophic cartilage suggesting a loss of cellular Zn(2+) as the chondrocytes mature. Intracellular labile Zn(2+) was measured in primary cultures of growth plate chondrocytes by assay with the fluorescent Zn-chelator toluenesulfonamidoquinoline (TSQ) and imaged by multi-photon laser scanning microscopy (MPLSM) with the TSQ derivative zinquin. Short-term exposure to Zn(2+), both in the presence and absence of pyrithione resulted in significant increases in cytosolic Zn(2+). Treatment with the membrane-permeant Zn(2+) chelator TPEN rapidly reduced the levels of labile Zn(2+) and triggered apoptosis. Cytosolic Zn(2+) levels were significantly reduced following 24-h incubations with known inducers of chondrocyte apoptosis. The loss of intracellular Zn(2+) was accompanied by a significant reduction in the cytosolic metal-binding protein metallothionein. Examination of Zn(2+)-treated cells with MPLSM showed uniformly higher zinquin fluorescence. Treatment of Zn(2+)-loaded cells with TPEN quenched zinquin fluorescence confirming that the observed fluorescence in chondrocytes is due to the presence of intracellular Zn(2+). A dose-dependent increase in zinquin fluorescence was observed in cells treated with a range of Zn(2+) concentrations. Short-term treatment of cultured chondrocytes with apoptosis-inducing chemicals resulted in transient increases in intracellular labile Zn(2+). These results indicate that Zn(2+) is mobilized from intracellular binding sites in the early stages of chondrocyte apoptosis and is subsequently lost from the cells. The early mobilization of Zn(2+) provides a mechanism for its movement to matrix vesicles and the extracellular matrix.


Assuntos
Apoptose/fisiologia , Condrócitos/metabolismo , Lâmina de Crescimento/metabolismo , Zinco/metabolismo , Animais , Cátions Bivalentes , Células Cultivadas , Galinhas , Condrócitos/química , Corantes Fluorescentes , Lâmina de Crescimento/química , Ossos do Metatarso/crescimento & desenvolvimento , Microscopia Confocal , Quinolonas , Tíbia/crescimento & desenvolvimento , Compostos de Tosil , Zinco/análise
2.
J Inorg Biochem ; 94(1-2): 14-27, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12620669

RESUMO

Stable, large unilamellar vesicles (LUV) have been constructed that model matrix vesicles (MV) in inducing de novo mineral formation when incubated in synthetic cartilage lymph (SCL). Using a dialysis method for incorporation of predetermined pure lipid, electrolyte and protein constituents, the detergent n-octyl beta-D-glucopyranoside enabled formation of stable, impermeable LUV with a diameter ( approximately 300 nm), lipid composition (phosphatidylcholine-phosphatidylserine-cholesterol, 7:2:2, molar ratio) and enclosed inorganic phosphate level (25-100 mM) similar to that of native MV. Mineral formation by these LUVs was measured by 45Ca(2+) uptake and FTIR analysis following incubation in SCL. Addition of the ionophore A23187 to SCL enabled 45Ca(2+) uptake comparable to that of native MV. FTIR analysis revealed that crystalline mineral formed in the LUV during incubation in SCL, but not in the absence of ionophore. This mineral had an IR absorption spectrum like that of the acid-phosphate-rich, octacalcium phosphate-like mineral formed by native MV. Perturbing the LUV membrane with either detergents or phospholipase A(2) following prior incubation in SCL enabled egress of mineral crystallites from the vesicle lumen, stimulating further mineral formation. Annexin V, a major protein in native MV with known Ca(2+) channel activity, incorporated into the LUV lumen or added to the external medium, induced only limited 45Ca(2+) uptake. This indicates that additional factors are required for annexin V to form Ca(2+) channels. Nevertheless for the first time, stable LUVs have been constructed with MV-like lipid, electrolyte, and protein composition and size that induce formation of mineral like that formed by native MV.


Assuntos
Modelos Biológicos , Anexina A5/metabolismo , Metabolismo dos Lipídeos , Espectroscopia de Infravermelho com Transformada de Fourier
3.
J Inorg Biochem ; 94(3): 221-35, 2003 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-12628702

RESUMO

The mechanism of matrix vesicle (MV) mineralization was studied using MVs isolated from normal growth plate tissue, as well as several putative intermediates in the MV mineralization pathway--amorphous calcium phosphate (ACP), calcium phosphate phosphatidylserine complex (CPLX) and hydroxyapatite (HAP). Radionuclide uptake and increase in turbidity were used to monitor mineral formation during incubation in synthetic cartilage lymph (SCL). Inhibitors of phosphate (Pi) metabolism, as well as replacing Na(+) with various cations, were used to study MV Pi transport, which had been thought to be Na(+)-dependent. MVs induced rapid mineralization approximately 3 h after addition to SCL; CPLX and HAP caused almost immediate induction; ACP required approximately 1 h. Phosphonoformate (PFA), a Pi analog, potently delayed the onset and reduced the rate of mineral formation of MV and the intermediates with IC(50)'s of 3-6 microM and approximately 10 microM, respectively. PFA:Pi molar ratios required to reduce the rate of rapid mineralization by 50% were approximately 1:30 for ACP, approximately 1:20 for HAP, approximately 1:3.3 for CPLX, and approximately 1:2.0 for MVs. MV mineralization was not found to be strictly Na(+)-dependent: substitution of Li(+) or K(+) for Na(+) had minimal effect; while N-methyl D-glucamine (NMG(+)) was totally inhibitory, choline(+) was clearly stimulatory. Na(+) substitutions had minimal effect on HAP- and CPLX-seeded mineral formation. However with ACP, NMG(+) totally blocked and choline(+) stimulated, just as they did MV mineralization. Thus, kinetic analyses indicate that ACP is a key intermediate, nevertheless, formation of CPLX appears to be the rate-limiting factor in MV mineralization.


Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Fosfatos/farmacologia , Sódio/farmacologia , Animais , Transporte Biológico Ativo , Matriz Óssea/efeitos dos fármacos , Matriz Óssea/metabolismo , Fosfatos de Cálcio/metabolismo , Fosfatos de Cálcio/farmacologia , Galinhas , Durapatita/metabolismo , Durapatita/farmacologia , Lâmina de Crescimento/efeitos dos fármacos , Lâmina de Crescimento/crescimento & desenvolvimento , Lâmina de Crescimento/metabolismo , Técnicas In Vitro , Cinética , Fosfatos/metabolismo , Fosfatidilserinas/metabolismo , Fosfatidilserinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...