Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Magn Reson ; 343: 107288, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36209574

RESUMO

Interleaved Nuclear Quadrupole Resonance (NQR) detection was conducted on ammonium nitrate and potassium chlorate using two 87Rb magnetometers, where potassium chlorate is measured during the T1 limited recovery time of ammonium nitrate. The multi-pass magnetometers are rapidly matched to the NQR frequencies, 531 kHz and 423 kHz, with the use of a single tuning field. For ease of implementation, a double resonant tank circuit was used for excitation, but could be replaced by a broad-band transmitter. All work was done in an unshielded environment and compared to conventional coil detection. The two magnetometers were sensitive, base noise as low as 2 fT/Hz, and were shown to reduce ambient noise through signal subtraction. When an excitation pulse was introduced, however, residual ringing increased the noise floor; mitigation techniques are discussed. The two detection techniques resulted in comparable Signal-to-Noise Ratio (SNR). Interleaved detection using the atomic magnetometers took half the time of conventional detection and provided localization of the explosives.

2.
J Magn Reson ; 335: 107145, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35078010

RESUMO

A model was developed for predicting a locked signal under a series of refocusing pulses for Nuclear Quadrupole Resonance (NQR) of spin I=32 and tested with a powder of KClO3. This work represents the first direct NQR detection of the 39K line of potassium chlorate. The characteristic time constants, T1,T2e and T2∗, were measured to determine the detectability of potassium chlorate via 39K-NQR. The echo train T2e was found to be strongly dependent on the refocusing pulse-spacing and weakly dependent on the refocusing pulse strength. The optimal angles of the excitation and echo pulse for a pulse train were also determined, as well as, the resonance-frequency dependence on sample temperature.


Assuntos
Algoritmos , Cloratos , Espectroscopia de Ressonância Magnética
3.
Sci Data ; 7(1): 362, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087719

RESUMO

The deviation of the electron density around the nuclei from spherical symmetry determines the electric field gradient (EFG), which can be measured by various types of spectroscopy. Nuclear Quadrupole Resonance (NQR) is particularly sensitive to the EFG. The EFGs, and by implication NQR frequencies, vary dramatically across materials. Consequently, searching for NQR spectral lines in previously uninvestigated materials represents a major challenge. Calculated EFGs can significantly aid at the search's inception. To facilitate this task, we have applied high-throughput density functional theory calculations to predict EFGs for 15187 materials in the JARVIS-DFT database. This database, which will include EFG as a standard entry, is continuously increasing. Given the large scope of the database, it is impractical to verify each calculation. However, we assess accuracy by singling out cases for which reliable experimental information is readily available and compare them to the calculations. We further present a statistical analysis of the results. The database and tools associated with our work are made publicly available by JARVIS-DFT ( https://www.ctcms.nist.gov/~knc6/JVASP.html ) and NIST-JARVIS API ( http://jarvis.nist.gov/ ).

4.
J Magn Reson ; 315: 106738, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32417414

RESUMO

In low-field magnetic resonance applications there is often an interest in creating homogeneous magnetic fields over unusual geometries, particularly when quantum magnetometers are involved. In this paper a design method is proposed, where both the surface current and magnetic field are expanded to find current coefficients that cancel out higher order field terms. Two coils are designed using this double expansion methodology: (1) a tuning field for a half-meter-long atomic magnetometer array and (2) a null field for a magnetometer to operate adjacent to an excitation solenoid. The field verification of the former shows the accuracy of CNC milling and the method proposed; a close analysis of the field signature in the latter revealed the limitations of 3D printing for precise scientific applications. Both coils are designed to be fifth-order error systems or better.

5.
J Magn Reson ; 296: 36-46, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30199791

RESUMO

An unshielded array of 87Rb atomic magnetometers, operating close to 1 MHz, is used to attenuate interference by 42-48 dB. A sensitivity of 15 fT/Hz to a local source of signal is retained. In addition, a 2D spectroscopic technique, in which the magnetometers are repeatedly pumped and data acquired between pump times, enables a synchronously generated signal to be distinguished from an interfering signal very close in frequency; the timing and signal mimics what would be observed in a magnetic resonance echo train. Combining the interference rejection and the 2D spectroscopy techniques, a 100 fT local signal is differentiated from a 20 pT interference signal operating only 1 Hz away. A phase-encoded reference signal is used to calibrate the magnetometers in real time in the presence of interference. Key to the strong interference rejection is the accurate calibration of the reference signal across the array, obtained through electron spin resonance measurements. This calibration is found to be sensitive to atomic polarization, RF pulse duration, and direction of the excitation. The experimental parameters required for an accurate and robust calibration are discussed.

6.
J Magn Reson ; 194(1): 1-7, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18571445

RESUMO

We report the first detection of a spin echo after excitation of a powder sample by a single pulse at the resonance frequency during nuclear quadrupole resonance (NQR). These echoes can occur in samples that have an inhomogeneously broadened line, in this case due to the distribution of electric field gradients. The echoes are easily detectable when the Rabi frequency approaches the linewidth and the average effective tipping angle is close to 270 degrees. When limited by a weak radio-frequency field, the single-pulse echo can be used to increase the signal to noise ratio over conventional techniques. These effects can be used to optimize the NQR detection of contraband containing quadrupole nuclei and they are demonstrated with glycine hemihydrochloride and hexhydro-1,3,5-trinitro-1,3,5-triazine (RDX).


Assuntos
Algoritmos , Imagem Ecoplanar/métodos , Substâncias Explosivas/análise , Espectroscopia de Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Marcadores de Spin
7.
J Magn Reson ; 177(1): 118-28, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16122957

RESUMO

NQR detection of materials, such as TNT, is hindered by the low signal-to-noise ratio at low NQR frequencies. Sweeping small (0-26 mT) magnetic fields to shift the (1)H NMR frequency relative to the (14)N NQR frequencies can provide a significant increase of the (14)N NQR signal-to-noise ratio. Three effects of (1)H-(14)N level crossing are demonstrated in diglycine hydrochloride and TNT. These effects are (1) transferring (1)H polarization to one or more of the (14)N transitions, including the use of an adiabatic flip of the (1)H polarization during the field sweep, (2) shortening the effective (14)N T(1) by the interaction of (1)H with the (14)N transitions, (3) "level transfer" effect where the third (14)N (spin 1) energy level or other (14)N sites with different NQR frequency are used as a reservoir of polarization which is transferred to the measured (14)N transition by the (1)H. The (14)N NQR signal-to-noise ratio can be increased by a factor of 2.5 for one (14)N site in diglycine hydrochloride (and 2.2 in TNT), even though the maximum (1)H frequency used in this work, 111 6 kHz, is only 30% larger than the measured (14)N frequencies (834 kHz for diglycine hydrochloride and 843 kHz for TNT).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA