Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 8(9): 1613-1614, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37604873
2.
PLoS Biol ; 21(4): e3002052, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37040332

RESUMO

Wheat, one of the most important food crops, is threatened by a blast disease pandemic. Here, we show that a clonal lineage of the wheat blast fungus recently spread to Asia and Africa following two independent introductions from South America. Through a combination of genome analyses and laboratory experiments, we show that the decade-old blast pandemic lineage can be controlled by the Rmg8 disease resistance gene and is sensitive to strobilurin fungicides. However, we also highlight the potential of the pandemic clone to evolve fungicide-insensitive variants and sexually recombine with African lineages. This underscores the urgent need for genomic surveillance to track and mitigate the spread of wheat blast outside of South America and to guide preemptive wheat breeding for blast resistance.


Assuntos
Pandemias , Triticum , Triticum/genética , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Genômica , Fungos
3.
Nat Plants ; 9(3): 385-392, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36797350

RESUMO

Since emerging in Brazil in 1985, wheat blast has spread throughout South America and recently appeared in Bangladesh and Zambia. Here we show that two wheat resistance genes, Rwt3 and Rwt4, acting as host-specificity barriers against non-Triticum blast pathotypes encode a nucleotide-binding leucine-rich repeat immune receptor and a tandem kinase, respectively. Molecular isolation of these genes will enable study of the molecular interaction between pathogen effector and host resistance genes.


Assuntos
Magnaporthe , Triticum , Triticum/genética , Triticum/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Brasil , Bangladesh
4.
Sci Rep ; 13(1): 108, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596834

RESUMO

Plant pathogens deliver effector proteins to reprogramme a host plants circuitry, supporting their own growth and development, whilst thwarting defence responses. A subset of these effectors are termed avirulence factors (Avr) and can be recognised by corresponding host resistance (R) proteins, creating a strong evolutionary pressure on pathogen Avr effectors that favours their modification/deletion to evade the immune response. Hence, identifying Avr effectors and tracking their allele frequencies in a population is critical for understanding the loss of host recognition. However, the current systems available to confirm Avr effector function, particularly for obligate biotrophic fungi, remain limited and challenging. Here, we explored the utility of the genetically tractable wheat blast pathogen Magnaporthe oryzae pathotype Triticum (MoT) as a suitable heterologous expression system in wheat. Using the recently confirmed wheat stem rust pathogen (Puccina graminis f. sp. tritici) avirulence effector AvrSr50 as a proof-of-concept, we found that delivery of AvrSr50 via MoT could elicit a visible Sr50-dependant cell death phenotype. However, activation of Sr50-mediated cell death correlated with a high transgene copy number and transcript abundance in MoT transformants. This illustrates that MoT can act as an effective heterologous delivery system for fungal effectors from distantly related fungal species, but only when enough transgene copies and/or transcript abundance is achieved.


Assuntos
Ascomicetos , Basidiomycota , Magnaporthe , Triticum/genética , Triticum/metabolismo , Ascomicetos/metabolismo , Basidiomycota/metabolismo , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
5.
Mol Plant Microbe Interact ; 35(12): 1061-1066, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36445162

RESUMO

Functional characterization of effector proteins of fungal obligate biotrophic pathogens, especially confirmation of avirulence (Avr) properties, has been notoriously difficult, due to the experimental intractability of many of these organisms. Previous studies in wheat have shown promising data suggesting the type III secretion system (T3SS) of bacteria may be a suitable surrogate for delivery and detection of Avr properties of fungal effectors. However, these delivery systems were tested in the absence of confirmed Avr effectors. Here, we tested two previously described T3SS-mediated delivery systems for their suitability when delivering two confirmed Avr effectors from two fungal pathogens of wheat, Puccinia graminis f. sp. tritici and Magnaporthe oryzae pathotype tritici. We showed that both effectors (AvrSr50 and AvrRmg8) were unable to elicit a hypersensitive response on wheat seedlings with the corresponding resistance gene when expressed by the Pseudomonas fluorescens "Effector to Host Analyser" (EtHAn) system. Furthermore, we found the utility of Burkholderia glumae for screening Avr phenotypes is severely limited, as the wild-type strain elicits nonhost cell death in multiple wheat accessions. These results provide valuable insight into the suitability of these systems for screening fungal effectors for Avr properties that may help guide further development of surrogate bacterial delivery systems in wheat. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Bactérias , Triticum , Triticum/microbiologia , Doenças das Plantas/microbiologia
6.
Commun Biol ; 5(1): 853, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35996019

RESUMO

Targeting host processes that allow pathogens to thrive can be invaluable in resistance breeding. Here, we generated a deep-sequencing transcriptome time course for Puccinia striiformis f. sp. tritici (Pst) infection on wheat and compared datasets from three wheat varieties with different levels of susceptibility to two tested pathogen isolates. We sought genes specifically altered in a susceptible host as candidates that might support colonisation. Host responses differed between Pst-varietal pairs most prominently early during infection. Notably, however, nuclear genes encoding chloroplast-localised proteins (NGCPs) exhibited temporal coordination of expression profiles that differed at later time points in relation to Pst susceptibility. Disrupting one such NGCP, encoding the chloroplast-localised RNA binding protein TaCSP41a, led to lower Pst susceptibility. These analyses thus highlight NGCPs as prime targets for Pst manipulation during infection and point to TaCSP41a disruption as a potential source of Pst resistance for breeding programmes.


Assuntos
Basidiomycota , Triticum , Basidiomycota/genética , Proteínas de Cloroplastos/metabolismo , Melhoramento Vegetal , Doenças das Plantas/genética , Puccinia , Triticum/genética , Triticum/metabolismo
7.
Plant Pathol ; 71(4): 890-900, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35873178

RESUMO

Wheat stem rust, caused by the fungus Puccinia graminis f. sp. tritici (Pgt), occurs in most wheat-growing areas worldwide, and, in western Europe since 2013, has started to re-emerge after many decades of absence. Following this trend across western Europe, in 2020, we also detected and recorded wheat stem rust for the first time in five decades in experimental plots across five locations in Ireland. To examine the potential origin of the Irish Pgt infection in 2020, we carried out transcriptome sequencing on 12 Pgt-infected wheat samples collected across Ireland and compared these to 76 global P. graminis isolates. This analysis identified a close genetic relationship between the Irish Pgt isolates and those from Ethiopia collected in 2015 after a severe stem rust epidemic caused by the TKTTF Pgt race, and with the UK-01 Pgt isolate that was previously assigned to the TKTTF race. Subsequent pathology-based race profiling designated two Irish isolates and recent UK and French Pgt isolates to the TKTTF Pgt race group. This suggests that the Irish Pgt occurrence most probably originated from recent long-distance windborne dispersal of Pgt urediniospores from neighbouring countries in Europe where we confirmed the Pgt TKTTF race continues to be prevalent. The identification of wheat stem rust in Ireland at multiple locations in 2020 illustrates that the disease can occur in Ireland and emphasizes the need to re-initiate local monitoring for this re-emergent threat to wheat production across western Europe.

9.
Commun Biol ; 4(1): 1216, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686772

RESUMO

Fungi have evolved an array of spore discharge and dispersal processes. Here, we developed a theoretical model that explains the ejection mechanics of aeciospore liberation in the stem rust pathogen Puccinia graminis. Aeciospores are released from cluster cups formed on its Berberis host, spreading early-season inoculum into neighboring small-grain crops. Our model illustrates that during dew or rainfall, changes in aeciospore turgidity exerts substantial force on neighboring aeciospores in cluster cups whilst gaps between spores become perfused with water. This perfusion coats aeciospores with a lubrication film that facilitates expulsion, with single aeciospores reaching speeds of 0.053 to 0.754 m·s-1. We also used aeciospore source strength estimates to simulate the aeciospore dispersal gradient and incorporated this into a publicly available web interface. This aids farmers and legislators to assess current local risk of dispersal and facilitates development of sophisticated epidemiological models to potentially curtail stem rust epidemics originating on Berberis.


Assuntos
Umidade , Puccinia/fisiologia , Esporos Fúngicos/fisiologia
10.
BMC Genomics ; 22(1): 166, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750297

RESUMO

BACKGROUND: Transcriptomics is being increasingly applied to generate new insight into the interactions between plants and their pathogens. For the wheat yellow (stripe) rust pathogen (Puccinia striiformis f. sp. tritici, Pst) RNA-based sequencing (RNA-Seq) has proved particularly valuable, overcoming the barriers associated with its obligate biotrophic nature. This includes the application of RNA-Seq approaches to study Pst and wheat gene expression dynamics over time and the Pst population composition through the use of a novel RNA-Seq based surveillance approach called "field pathogenomics". As a dual RNA-Seq approach, the field pathogenomics technique also provides gene expression data from the host, giving new insight into host responses. However, this has created a wealth of data for interrogation. RESULTS: Here, we used the field pathogenomics approach to generate 538 new RNA-Seq datasets from Pst-infected field wheat samples, doubling the amount of transcriptomics data available for this important pathosystem. We then analysed these datasets alongside 66 RNA-Seq datasets from four Pst infection time-courses and 420 Pst-infected plant field and laboratory samples that were publicly available. A database of gene expression values for Pst and wheat was generated for each of these 1024 RNA-Seq datasets and incorporated into the development of the rust expression browser ( http://www.rust-expression.com ). This enables for the first time simultaneous 'point-and-click' access to gene expression profiles for Pst and its wheat host and represents the largest database of processed RNA-Seq datasets available for any of the three Puccinia wheat rust pathogens. We also demonstrated the utility of the browser through investigation of expression of putative Pst virulence genes over time and examined the host plants response to Pst infection. CONCLUSIONS: The rust expression browser offers immense value to the wider community, facilitating data sharing and transparency and the underlying database can be continually expanded as more datasets become publicly available.


Assuntos
Basidiomycota , Transcriptoma , Basidiomycota/genética , Doenças das Plantas/genética , Triticum/genética , Virulência
11.
Phytopathology ; 111(10): 1893-1896, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33734870

RESUMO

Puccinia kuehnii is an obligate biotrophic fungal pathogen that causes orange rust of sugarcane, which is prevalent in many countries around the globe. In the United States, orange rust was first detected in sugarcane in Florida in 2007 and poses a persistent and economically damaging threat to the sugarcane industry in this region. Here, we generated the first genome assemblies for two isolates of P. kuehnii (1040 and 2143) collected in Florida in 2017 from two sugarcane cultivars, CL85-1040 and CP89-2143, respectively. These two rust genome resources will be of immense value for future genomic studies, particularly further exploration of the predicted secretomes that may help define key pathogenicity determinants for this economically important pathogen.


Assuntos
Saccharum , Genômica , Doenças das Plantas , Puccinia , Secretoma
12.
Plant Cell ; 33(5): 1728-1747, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33565586

RESUMO

Plant pathogens suppress defense responses to evade recognition and promote successful colonization. Although identifying the genes essential for pathogen ingress has traditionally relied on screening mutant populations, the post-genomic era provides an opportunity to develop novel approaches that accelerate identification. Here, RNA-seq analysis of 68 pathogen-infected bread wheat (Triticum aestivum) varieties, including three (Oakley, Solstice and Santiago) with variable levels of susceptibility, uncovered a branched-chain amino acid aminotransferase (termed TaBCAT1) as a positive regulator of wheat rust susceptibility. We show that TaBCAT1 is required for yellow and stem rust infection and likely functions in branched-chain amino acid (BCAA) metabolism, as TaBCAT1 disruption mutants had elevated BCAA levels. TaBCAT1 mutants also exhibited increased levels of salicylic acid (SA) and enhanced expression of associated defense genes, indicating that BCAA regulation, via TaBCAT1, has a key role in SA-dependent defense activation. We also identified an association between the levels of BCAAs and resistance to yellow rust infection in wheat. These findings provide insight into SA-mediated defense responses in wheat and highlight the role of BCAA metabolism in the defense response. Furthermore, TaBCAT1 could be manipulated to potentially provide resistance to two of the most economically damaging diseases of wheat worldwide.


Assuntos
Aminoácidos/metabolismo , Basidiomycota/fisiologia , Resistência à Doença , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Transaminases/metabolismo , Triticum/enzimologia , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Homeostase , Mitocôndrias/metabolismo , Modelos Biológicos , Mutação/genética , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo
13.
New Phytol ; 229(6): 3424-3439, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33251609

RESUMO

The plant apoplast is a harsh environment in which hydrolytic enzymes, especially proteases, accumulate during pathogen infection. However, the defense functions of most apoplastic proteases remain largely elusive. We show here that a newly identified small cysteine-rich secreted protein PC2 from the potato late blight pathogen Phytophthora infestans induces immunity in Solanum plants only after cleavage by plant apoplastic subtilisin-like proteases, such as tomato P69B. A minimal 61 amino acid core peptide carrying two key cysteines, conserved widely in most oomycete species, is sufficient for PC2-induced cell death. Furthermore, we showed that Kazal-like protease inhibitors, such as EPI1, produced by P. infestans prevent PC2 cleavage and dampen PC2 elicited host immunity. This study reveals that cleavage of pathogen proteins to release immunogenic peptides is an important function of plant apoplastic proteases.


Assuntos
Phytophthora infestans , Solanum lycopersicum , Solanum tuberosum , Solanum , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Subtilisinas
14.
PLoS Genet ; 16(12): e1009291, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33370783

RESUMO

Pathogen populations are expected to evolve virulence traits in response to resistance deployed in agricultural settings. However, few temporal datasets have been available to characterize this process at the population level. Here, we examined two temporally separated populations of Puccinia coronata f. sp. avenae (Pca), which causes crown rust disease in oat (Avena sativa) sampled from 1990 to 2015. We show that a substantial increase in virulence occurred from 1990 to 2015 and this was associated with a genetic differentiation between populations detected by genome-wide sequencing. We found strong evidence for genetic recombination in these populations, showing the importance of the alternate host in generating genotypic variation through sexual reproduction. However, asexual expansion of some clonal lineages was also observed within years. Genome-wide association analysis identified seven Avr loci associated with virulence towards fifteen Pc resistance genes in oat and suggests that some groups of Pc genes recognize the same pathogen effectors. The temporal shift in virulence patterns in the Pca populations between 1990 and 2015 is associated with changes in allele frequency in these genomic regions. Nucleotide diversity patterns at a single Avr locus corresponding to Pc38, Pc39, Pc55, Pc63, Pc70, and Pc71 showed evidence of a selective sweep associated with the shift to virulence towards these resistance genes in all 2015 collected isolates.


Assuntos
Frequência do Gene , Genes Fúngicos , Puccinia/genética , Avena/microbiologia , Polimorfismo Genético , Puccinia/patogenicidade , Seleção Genética , Virulência/genética
15.
Front Plant Sci ; 11: 570180, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072145

RESUMO

Wheat stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt), is regaining prominence due to the recent emergence of virulent isolates and epidemics in Africa, Europe and Central Asia. The development and deployment of wheat cultivars with multiple stem rust resistance (Sr) genes stacked together will provide durable resistance. However, certain disease resistance genes can suppress each other or fail in particular genetic backgrounds. Therefore, the function of each Sr gene must be confirmed after incorporation into an Sr-gene stack. This is difficult when using pathogen disease assays due to epistasis from recognition of multiple avirulence (Avr) effectors. Heterologous delivery of single Avr effectors can circumvent this limitation, but this strategy is currently limited by the paucity of cloned Pgt Avrs. To accelerate Avr gene cloning, we outline a procedure to develop a mutant population of Pgt spores and select for gain-of-virulence mutants. We used ethyl methanesulphonate (EMS) to mutagenize urediniospores and create a library of > 10,000 independent mutant isolates that were combined into 16 bulks of ~658 pustules each. We sequenced random mutants and determined the average mutation density to be 1 single nucleotide variant (SNV) per 258 kb. From this, we calculated that a minimum of three independently derived gain-of-virulence mutants is required to identify a given Avr gene. We inoculated the mutant library onto plants containing Sr43, Sr44, or Sr45 and obtained 9, 4, and 14 mutants with virulence toward Sr43, Sr44, or Sr45, respectively. However, only mutants identified on Sr43 and Sr45 maintained their virulence when reinolculated onto the lines from which they were identified. We further characterized 8 mutants with virulence toward Sr43. These also maintained their virulence profile on the stem rust international differential set containing 20 Sr genes, indicating that they were most likely not accidental contaminants. In conclusion, our method allows selecting for virulent mutants toward targeted resistance (R) genes. The development of a mutant library from as little as 320 mg spores creates a resource that enables screening against several R genes without the need for multiple rounds of spore multiplication and mutagenesis.

16.
New Phytol ; 225(1): 118-125, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31225901

RESUMO

In recent years, the number of emergent plant pathogens (EPPs) has grown substantially, threatening agroecosystem stability and native biodiversity. Contributing factors include, among others, shifts in biogeography, with EPP spread facilitated by the global unification of monocultures in modern agriculture, high volumes of trade in plants and plant products and an increase in sexual recombination within pathogen populations. The unpredictable nature of EPPs as they move into new territories is a situation that has led to sudden and widespread epidemics. Understanding the underlying causes of pathogen emergence is key to managing the impact of EPPs. Here, we review some factors specifically influencing the emergence of oomycete and fungal EPPs, including new introductions through anthropogenic movement, natural dispersal and weather events, as well as genetic factors linked to shifts in host range.


Assuntos
Biodiversidade , Fungos/fisiologia , Especificidade de Hospedeiro , Oomicetos/fisiologia , Doenças das Plantas/microbiologia , Plantas/microbiologia , Agricultura
17.
BMC Biol ; 17(1): 65, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31405370

RESUMO

BACKGROUND: Effective disease management depends on timely and accurate diagnosis to guide control measures. The capacity to distinguish between individuals in a pathogen population with specific properties such as fungicide resistance, toxin production and virulence profiles is often essential to inform disease management approaches. The genomics revolution has led to technologies that can rapidly produce high-resolution genotypic information to define individual variants of a pathogen species. However, their application to complex fungal pathogens has remained limited due to the frequent inability to culture these pathogens in the absence of their host and their large genome sizes. RESULTS: Here, we describe the development of Mobile And Real-time PLant disEase (MARPLE) diagnostics, a portable, genomics-based, point-of-care approach specifically tailored to identify individual strains of complex fungal plant pathogens. We used targeted sequencing to overcome limitations associated with the size of fungal genomes and their often obligately biotrophic nature. Focusing on the wheat yellow rust pathogen, Puccinia striiformis f.sp. tritici (Pst), we demonstrate that our approach can be used to rapidly define individual strains, assign strains to distinct genetic lineages that have been shown to correlate tightly with their virulence profiles and monitor genes of importance. CONCLUSIONS: MARPLE diagnostics enables rapid identification of individual pathogen strains and has the potential to monitor those with specific properties such as fungicide resistance directly from field-collected infected plant tissue in situ. Generating results within 48 h of field sampling, this new strategy has far-reaching implications for tracking plant health threats.


Assuntos
Basidiomycota/isolamento & purificação , Testes Diagnósticos de Rotina/métodos , Doenças das Plantas/microbiologia , Sistemas Automatizados de Assistência Junto ao Leito , Basidiomycota/classificação , Doenças das Plantas/classificação
18.
Commun Biol ; 2: 51, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30729187

RESUMO

In our recent Communications Biology article, we reported the first occurrence of wheat stem rust in the UK in nearly six decades. An increased incidence of wheat stem rust in Western Europe, caused by the fungus Puccinia graminis f. sp. tritici, could signify the return of this formidable foe. As pathologists fight back against this devastating disease we outline the continuing research and strategies being employed to bridle its onslaught.


Assuntos
Basidiomycota/patogenicidade , Berberis/microbiologia , Doenças das Plantas/microbiologia , Triticum/microbiologia , Animais , Basidiomycota/fisiologia , Conservação dos Recursos Naturais/legislação & jurisprudência , Conservação dos Recursos Naturais/métodos , Suscetibilidade a Doenças/microbiologia , Ecossistema , Europa (Continente) , Genótipo , Mariposas/fisiologia , Fenótipo
19.
New Phytol ; 221(3): 1529-1543, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30288750

RESUMO

Physiological races of the oomycete Albugo candida are biotrophic pathogens of diverse plant species, primarily the Brassicaceae, and cause infections that suppress host immunity to other pathogens. However, A. candida race diversity and the consequences of host immunosuppression are poorly understood in the field. We report a method that enables sequencing of DNA of plant pathogens and plant-associated microbes directly from field samples (Pathogen Enrichment Sequencing: PenSeq). We apply this method to explore race diversity in A. candida and to detect A. candida-associated microbes in the field (91 A. candida-infected plants). We show with unprecedented resolution that each host plant species supports colonization by one of 17 distinct phylogenetic lineages, each with an unique repertoire of effector candidate alleles. These data reveal the crucial role of sexual and asexual reproduction, polyploidy and host domestication in A. candida specialization on distinct plant species. Our bait design also enabled phylogenetic assignment of DNA sequences from bacteria and fungi from plants in the field. This paper shows that targeted sequencing has a great potential for the study of pathogen populations while they are colonizing their hosts. This method could be applied to other microbes, especially to those that cannot be cultured.


Assuntos
Brassicaceae/genética , Brassicaceae/microbiologia , Variação Genética , Interações Hospedeiro-Patógeno , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Ploidias , Sequência de Bases , Brassicaceae/crescimento & desenvolvimento , Frequência do Gene/genética , Loci Gênicos , Genética Populacional , Genótipo , Heterozigoto , Filogenia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Recombinação Genética/genética
20.
Commun Biol ; 1: 13, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271900

RESUMO

Wheat stem rust, a devastating disease of wheat and barley caused by the fungal pathogen Puccinia graminis f. sp. tritici, was largely eradicated in Western Europe during the mid-to-late twentieth century. However, isolated outbreaks have occurred in recent years. Here we investigate whether a lack of resistance in modern European varieties, increased presence of its alternate host barberry and changes in climatic conditions could be facilitating its resurgence. We report the first wheat stem rust occurrence in the United Kingdom in nearly 60 years, with only 20% of UK wheat varieties resistant to this strain. Climate changes over the past 25 years also suggest increasingly conducive conditions for infection. Furthermore, we document the first occurrence in decades of P. graminis on barberry in the UK . Our data illustrate that wheat stem rust does occur in the UK and, when climatic conditions are conducive, could severely harm wheat and barley production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...