Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Chem Biol ; 5(4): 328-334, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38576720

RESUMO

Passive membrane permeability is an important property in drug discovery and biological probe design. To elucidate the cell-penetrating ability of oxadiazole-containing (Odz) peptides, we employed the Chloroalkane Penetration Assay. The present study demonstrates that Odz cyclic peptides can be highly cell-penetrant depending on the position of specific side chains and the chloroalkane tag. Solution NMR shows that Odz cyclic peptides adopt a ß-turn conformation. However, despite observing high cell penetration, we observed low passive permeability in experiments with artificial membranes. These findings highlight the complexity of controlling cell penetration for conformationally sensitive macrocycles and suggest that Odz cyclic peptides may provide a framework for designing cell-penetrant cyclic peptides.

2.
Angew Chem Int Ed Engl ; : e202402372, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499461

RESUMO

While peptide macrocycles with rigid conformations have proven to be useful in the design of chemical probes of protein targets, conformational flexibility and rapid interconversion can be equally vital for biological activity and favorable physicochemical properties. This study introduces the concept of "structural pin", which describes a hydrogen bond that is largely responsible for stabilizing the entire macrocycle backbone conformation. Structural analysis of macrocycles using nuclear magnetic resonance (NMR), molecular modelling and X-ray diffraction indicates that disruption of the structural pin can drastically influence the conformation of the entire ring, resulting in novel states with increased flexibility. This finding provides a new tool to interrogate dynamic behaviour of macrocycles. Identification of structural pins offers a potentially useful conceptual framework to understand positions that can either be modified to give flexible structures or retained to maintain the rigidity of the scaffold.

3.
Chemistry ; : e202400308, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488326

RESUMO

Cyclic peptides are increasingly important structures in drugs but their development can be impeded by difficulties associated with their synthesis. Here, we introduce the 3-aminoazetidine (3-AAz) subunit as a new turn-inducing element for the efficient synthesis of small head-to-tail cyclic peptides. Greatly improved cyclizations of tetra-, penta- and hexapeptides (28 examples) under standard reaction conditions are achieved by introduction of this element within the linear peptide precursor. Post-cyclization deprotection of the amino acid side chains with strong acid is realized without degradation of the strained four-membered azetidine. A special feature of this chemistry is that further late-stage modification of the resultant macrocyclic peptides can be achieved via the 3-AAz unit. This is done by: (i) chemoselective deprotection and substitution at the azetidine nitrogen, or by (ii) a click-based approach employing a 2-propynyl carbamate on the azetidine nitrogen. In this way, a range of dye and biotin tagged macrocycles are readily produced. Structural insights gained by XRD analysis of a cyclic tetrapeptide indicate that the azetidine ring encourages access to the less stable, all-trans conformation. Moreover, introduction of a 3-AAz into a representative cyclohexapeptide improves stability towards proteases compared to the homodetic macrocycle.

4.
J Org Chem ; 89(3): 1483-1491, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38217516

RESUMO

The efficiency of macrocyclization reactions relies on the appropriate conformational preorganization of a linear precursor, ensuring that reactive ends are in spatial proximity prior to ring closure. Traditional peptide cyclization approaches that reduce the extent of terminal ion pairing often disfavor cyclization-conducive conformations and can lead to undesired cyclodimerization or oligomerization side reactions, particularly when they are performed without high dilution. To address this challenge, synthetic strategies that leverage attractive noncovalent interactions, such as zwitterionic attraction between chain termini during macrocyclization, offer a potential solution by reducing the entropic penalty associated with linear peptides adopting precyclization conformations. In this study, we investigate the role of (N-isocyanoimino)triphenylphosphorane (Pinc) in facilitating the cyclization of linear peptides into conformationally rigid macrocycles. The observed moderate diastereoselectivity is consistent with the preferential Si-facial addition of Pinc, where the isocyanide adds to the E-iminium ion on the same face as the l-proline amide group. The resulting peptide chain reveals that the activated phosphonium ylide of Pinc brings the reactive ends close together, promoting cyclization by enclosing the carboxylate within the interior of the pentapeptide and preventing the formation of byproducts. For shorter peptides with modified peptide backbones, the cyclization mechanism and outcome are redirected, as nucleophilic motifs such as thiazole and imidazole can covalently trap nitrilium intermediates. The isolation of the intermediate in the unproductive macrocyclization pathway, along with nuclear magnetic resonance and density functional theory studies, provides insights into heterocycle-dependent selectivity. The Pinc-driven macrocyclization process has generated diverse collections of cyclic molecules, and our models offer a comprehensive understanding of observed trends, facilitating the development of other heterocycle-forming macrocyclization reactions.


Assuntos
Compostos Organofosforados , Peptídeos Cíclicos , Peptídeos , Peptídeos/química , Conformação Molecular , Espectroscopia de Ressonância Magnética , Ciclização , Peptídeos Cíclicos/química
5.
Angew Chem Int Ed Engl ; 62(5): e202214729, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36346911

RESUMO

Site-selective transformations of densely functionalized scaffolds have been a topic of intense interest in chemical synthesis. Herein we have repurposed the rarely used Cornforth rearrangement as a tool to effect a single-atom ring contraction in cyclic peptide backbones. Investigations into the kinetics of the rearrangement were carried out to understand the impact of electronic factors, ring size, and linker type on the reaction efficiency. Conformational analysis was undertaken and showed how subtle differences in the peptide backbone result in substrate-dependent reaction profiles. This methodology can now be used to perform conformation-activity studies. The chemistry also offers an opportunity to install building blocks that are not compatible with traditional C-to-N iterative synthesis of macrocycle precursors.


Assuntos
Peptídeos Cíclicos , Peptídeos , Peptídeos/química , Peptídeos Cíclicos/química , Conformação Molecular , Cinética
6.
Chem Sci ; 13(44): 12942-12944, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36425493

RESUMO

In the past, cyclic peptide drugs were commonly discovered by isolation of natural products. However, recent efforts predominantly use high-throughput synthetic or genetically encoded libraries to find potent and selective hits against a range of challenging therapeutic targets. Kawamura et al. (Chem. Sci., 2022, 13, 3256-3262, https://doi.org/10.1039/D1SC06844J) developed a new workflow that can be applied to mRNA display, using high-throughput clustering, SAR investigations and in silico structural studies. This led to the discovery of nanomolar, serum-stable cyclic peptides against the human glucose-dependent insulinotropic peptide receptor (hGIP-R).

7.
RSC Chem Biol ; 3(6): 739-747, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35755184

RESUMO

Identification of turn motifs that are stabilized by intramolecular hydrogen bonds can be useful in describing the conformation of peptide systems. However, this approach is somewhat insufficient for cyclic peptides because peptide regions that are not positioned within a hydrogen bond can be left with no description. Furthermore, non-regular secondary structures and other rarely-observed conformations can be left without detailed evaluation. Herein, we describe "higher-order" ϕ/ψ plots termed macrocycle conformational maps (MCMs) as a tool for evaluating and comparing the conformations of a series of structurally related macrocyclic peptides.

8.
Angew Chem Int Ed Engl ; 61(33): e202206866, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35687524

RESUMO

Passive membrane permeability is a fundamental challenge in the development of bioactive macrocycles. To achieve this objective, chemists have resorted to various strategies, the most common of which is deployment of N-methylated amino acids and/or D-amino acids. Here we investigate the effect of heterocyclic grafts on the passive membrane permeability of macrocycles and report the structural consequences of iterative amino acid replacement by azole rings. Through stepwise substitution of amino acid residues for heterocycles, we show that lipophilicity and PAMPA permeability of a macrocycle can be vastly improved. Overall, changes in permeability do not scale linearly as more heterocycles are incorporated, underscoring the subtleties of conformation-property relationships in this class of molecule. NMR analysis and molecular dynamics simulations provide insights into the structural consequences of the added heterocycles and these frameworks can now be applied as macrocyclic scaffolds for drug discovery.


Assuntos
Compostos Macrocíclicos , Simulação de Dinâmica Molecular , Aminoácidos/química , Permeabilidade da Membrana Celular , Descoberta de Drogas , Compostos Macrocíclicos/química , Conformação Molecular , Peptídeos Cíclicos/química
9.
Chem Sci ; 10(8): 2465-2472, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30881675

RESUMO

Cyclic peptides are an important source of new drugs but are challenging to produce synthetically. We show that head-to-tail peptide macrocyclisations are greatly improved, as measured by isolated yields, reaction rates and product distribution, by substitution of one of the backbone amide C[double bond, length as m-dash]O bonds with an oxetane ring. The cyclisation precursors are easily made by standard solution- or solid-phase peptide synthesis techniques. Macrocyclisations across a range of challenging ring sizes (tetra-, penta- and hexapeptides) are enabled by incorporation of this turn-inducing element. Oxetane incorporation is shown to be superior to other established amino acid modifications such as N-methylation. The positional dependence of the modification on cyclisation efficiency is mapped using a cyclic peptide of sequence LAGAY. We provide the first direct experimental evidence that oxetane modification induces a turn in linear peptide backbones, through the observation of d NN (i, i + 2) and d αN (i, i + 2) NOEs, which offers an explanation for these improvements. For cyclic peptide, cLAGAY, a combination of NMR derived distance restraints and molecular dynamics simulations are used to show that this modification alters the backbone conformation in proximity to the oxetane, with the flexibility of the ring reduced and a new intramolecular H-bond established. Finally, we incorporated an oxetane into a cyclic pentapeptide inhibitor of Aminopeptidase N, a transmembrane metalloprotease overexpressed on the surface of cancer cells. The inhibitor, cCNGRC, displayed similar IC50 values in the presence or absence of an oxetane at the glycine residue, indicating that bioactivity is fully retained upon amide C[double bond, length as m-dash]O bond replacement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...