Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(18): 6922-6929, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38653330

RESUMO

We report the development and validation of an untargeted single-cell lipidomics method based on microflow chromatography coupled to a data-dependent mass spectrometry method for fragmentation-based identification of lipids. Given the absence of single-cell lipid standards, we show how the methodology should be optimized and validated using a dilute cell extract. The methodology is applied to dilute pancreatic cancer and macrophage cell extracts and standards to demonstrate the sensitivity requirements for confident assignment of lipids and classification of the cell type at the single-cell level. The method is then coupled to a system that can provide automated sampling of live, single cells into capillaries under microscope observation. This workflow retains the spatial information and morphology of cells during sampling and highlights the heterogeneity in lipid profiles observed at the single-cell level. The workflow is applied to show changes in single-cell lipid profiles as a response to oxidative stress, coinciding with expanded lipid droplets. This demonstrates that the workflow is sufficiently sensitive to observing changes in lipid profiles in response to a biological stimulus. Understanding how lipids vary in single cells will inform future research into a multitude of biological processes as lipids play important roles in structural, biophysical, energy storage, and signaling functions.


Assuntos
Lipidômica , Lipídeos , Análise de Célula Única , Lipidômica/métodos , Humanos , Lipídeos/análise , Lipídeos/química , Animais , Cromatografia Líquida , Camundongos , Linhagem Celular Tumoral , Espectrometria de Massas , Macrófagos/metabolismo , Macrófagos/citologia
2.
Anal Chem ; 95(39): 14727-14735, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37725657

RESUMO

In this work, we demonstrate the development and first application of nanocapillary sampling followed by analytical flow liquid chromatography-mass spectrometry for single-cell lipidomics. Around 260 lipids were tentatively identified in a single cell, demonstrating remarkable sensitivity. Human pancreatic ductal adenocarcinoma cells (PANC-1) treated with the chemotherapeutic drug gemcitabine can be distinguished from controls solely on the basis of their single-cell lipid profiles. Notably, the relative abundance of LPC(0:0/16:0) was significantly affected in gemcitabine-treated cells, in agreement with previous work in bulk. This work serves as a proof of concept that live cells can be sampled selectively and then characterized using automated and widely available analytical workflows, providing biologically relevant outputs.


Assuntos
Lipidômica , Neoplasias Pancreáticas , Humanos , Cromatografia Líquida , Lipidômica/métodos , Lipídeos/análise , Espectrometria de Massas em Tandem , Neoplasias Pancreáticas/tratamento farmacológico , Gencitabina , Neoplasias Pancreáticas
3.
Curr Opin Chem Biol ; 75: 102327, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37224735

RESUMO

Single cell metabolomics is a rapidly advancing field of bio-analytical chemistry which aims to observe cellular biology with the greatest detail possible. Mass spectrometry imaging and selective cell sampling (e.g. using nanocapillaries) are two common approaches within the field. Recent achievements such as observation of cell-cell interactions, lipids determining cell states and rapid phenotypic identification demonstrate the efficacy of these approaches and the momentum of the field. However, single cell metabolomics can only continue with the same impetus if the universal challenges to the field are met, such as the lack of strategies for standardisation and quantification, and lack of specificity/sensitivity. Mass spectrometry imaging and selective cell sampling come with unique advantages and challenges which, in many cases are complementary to each other. We propose here that the challenges specific to each approach could be ameliorated with collaboration between the two communities driving these approaches.


Assuntos
Lipídeos , Metabolômica , Lipídeos/química , Metabolômica/métodos , Espectrometria de Massas/métodos
4.
Analyst ; 148(5): 1041-1049, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36723178

RESUMO

This work describes the development of a new approach to measure drug levels and lipid fingerprints in single living mammalian cells. Nanocapillary sampling is an approach that enables the selection and isolation of single living cells under microscope observation. Here, live single cell nanocapillary sampling is coupled to liquid chromatography for the first time. This allows molecular species to be separated prior to ionisation and improves measurement precision of drug analytes. The efficiency of transferring analytes from the sampling capillary into a vial was optimised in this work. The analysis was carried out using standard flow liquid chromatography coupled to widely available mass spectrometry instrumentation, highlighting opportunities for widespread adoption. The method was applied to 30 living cells, revealing cell-to-cell heterogeneity in the uptake of different drug molecules. Using this system, we detected 14-158 lipid features per single cell, revealing the association between bedaquiline uptake and lipid fingerprints.


Assuntos
Lipídeos , Mamíferos , Animais , Espectrometria de Massas/métodos , Cromatografia Líquida/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...