Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1028, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200208

RESUMO

Following the development of modern genome sequencing technologies, the investigation of museum osteological finds is increasingly informative and popular. Viable protocols to help preserve these collections from exceedingly invasive analyses, would allow greater access to the specimens for scientific research. The main aim of this work is to survey skeletal tissues, specifically petrous bones and roots of teeth, using infrared spectroscopy as a prescreening method to assess the bone quality for molecular analyses. This approach could overcome the major problem of identifying useful genetic material in archaeological bone collections without resorting to demanding, time consuming and expensive laboratory studies. A minimally invasive sampling of archaeological bones was developed and bone structural and compositional changes were examined, linking isotopic and genetic data to infrared spectra. The predictive model based on Infrared parameters is effective in determining the occurrence of ancient DNA (aDNA); however, the quality/quantity of aDNA cannot be determined because of the influence of environmental and local factors experienced by the examined bones during the burial period.


Assuntos
Arqueologia , Sepultamento , Humanos , Espectrofotometria Infravermelho , Mapeamento Cromossômico , DNA Antigo , Isótopos
2.
Nature ; 615(7950): 117-126, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859578

RESUMO

Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants.


Assuntos
Arqueologia , Genoma Humano , Genômica , Genética Humana , Caça , Paleontologia , Humanos , Europa (Continente)/etnologia , Pool Gênico , História Antiga , Genoma Humano/genética
4.
PLoS One ; 18(1): e0279546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36598920

RESUMO

Studying infant diet and feeding practices through stable isotope analysis provides direct insight into the life and health of vulnerable population groups in the past. Although the general diet in medieval and early modern Livonia has been reconstructed from written sources, little is known about childhood diet during this tumultuous period of Eastern European history. This study presents a comparative investigation of the staple non-adult diet in urban/rural communities during the 13th-17th centuries AD, with a special focus on feeding practices. We aim to reveal the impact of socio-economic circumstances on early childhood nutrition, which affects the physical development and overall survival of this susceptible population group. Bone collagen samples from 176 individuals between the fetal and the 7-15 age categories from four urban/rural South-Estonian cemeteries were cross-sectionally analyzed via EA-IRMS (Elemental Analysis with Isotope Ratio Mass Spectroscopy) for δ13C and δ15N. Results suggest that South-Estonian children had a staple terrestrial C3 diet integrated with animal proteins. Significant divergences were observed between urban and rural sites and slight variation occurred among rural subgroups, possibly resulting from a wider food choice available in towns, different consumption of C4 foods, and/or secular changes. This study provides the first data regarding infant feeding practices in medieval and early modern Livonia. These practices were similar among the different contexts, indicating comparable cultural traditions in child rearing. Breastfeeding was likely practiced for 1-2 years, with supplementary foods introduced around 1 year of age. The weaning process was probably concluded around the age of 3. The δ13C and δ15N values of older children are comparable to those of the adults from the same sites, indicating their diets became similar after weaning, when they started working and obtained a more mature social status.


Assuntos
Aleitamento Materno , Comportamento Alimentar , Animais , Feminino , Humanos , Pré-Escolar , História Medieval , Estônia , Aleitamento Materno/história , Desmame , Isótopos de Carbono/análise , Isótopos de Nitrogênio/análise , Dieta , Alimentos Infantis
5.
Mol Biol Evol ; 39(2)2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35038748

RESUMO

The geographical location and shape of Apulia, a narrow land stretching out in the sea at the South of Italy, made this region a Mediterranean crossroads connecting Western Europe and the Balkans. Such movements culminated at the beginning of the Iron Age with the Iapygian civilization which consisted of three cultures: Peucetians, Messapians, and Daunians. Among them, the Daunians left a peculiar cultural heritage, with one-of-a-kind stelae and pottery, but, despite the extensive archaeological literature, their origin has been lost to time. In order to shed light on this and to provide a genetic picture of Iron Age Southern Italy, we collected and sequenced human remains from three archaeological sites geographically located in Northern Apulia (the area historically inhabited by Daunians) and radiocarbon dated between 1157 and 275 calBCE. We find that Iron Age Apulian samples are still distant from the genetic variability of modern-day Apulians, they show a degree of genetic heterogeneity comparable with the cosmopolitan Republican and Imperial Roman civilization, even though a few kilometers and centuries separate them, and they are well inserted into the Iron Age Pan-Mediterranean genetic landscape. Our study provides for the first time a window on the genetic make-up of pre-Roman Apulia, whose increasing connectivity within the Mediterranean landscape, would have contributed to laying the foundation for modern genetic variability. In this light, the genetic profile of Daunians may be compatible with an at least partial autochthonous origin, with plausible contributions from the Balkan peninsula.


Assuntos
DNA Mitocondrial , DNA Mitocondrial/genética , Europa (Continente) , Itália
6.
Hum Genet ; 140(10): 1417-1431, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34410492

RESUMO

The Italian Peninsula, a natural pier across the Mediterranean Sea, witnessed intricate population events since the very beginning of the human occupation in Europe. In the last few years, an increasing number of modern and ancient genomes from the area have been published by the international research community. This genomic perspective started unveiling the relevance of Italy to understand the post-Last Glacial Maximum (LGM) re-peopling of Europe, the earlier phase of the Neolithic westward migrations, and its linking role between Eastern and Western Mediterranean areas after the Iron Age. However, many open questions are still waiting for more data to be addressed in full. With this review, we summarize the current knowledge emerging from the available ancient Italian individuals and, by re-analysing them all at once, we try to shed light on the avenues future research in the area should cover. In particular, open questions concern (1) the fate of pre-Villabruna Europeans and to what extent their genomic components were absorbed by the post-LGM hunter-gatherers; (2) the role of Sicily and Sardinia before LGM; (3) to what degree the documented genetic structure within the Early Neolithic settlers can be described as two separate migrations; (4) what are the population events behind the marked presence of an Iranian Neolithic-like component in Bronze Age and Iron Age Italian and Southern European samples.


Assuntos
DNA Antigo/análise , Evolução Molecular , Variação Genética , Genoma Humano , Genômica/história , População Branca/genética , População Branca/história , História Antiga , História Medieval , Humanos , Itália
7.
Curr Biol ; 31(12): 2576-2591.e12, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33974848

RESUMO

Across Europe, the genetics of the Chalcolithic/Bronze Age transition is increasingly characterized in terms of an influx of Steppe-related ancestry. The effect of this major shift on the genetic structure of populations in the Italian Peninsula remains underexplored. Here, genome-wide shotgun data for 22 individuals from commingled cave and single burials in Northeastern and Central Italy dated between 3200 and 1500 BCE provide the first genomic characterization of Bronze Age individuals (n = 8; 0.001-1.2× coverage) from the central Italian Peninsula, filling a gap in the literature between 1950 and 1500 BCE. Our study confirms a diversity of ancestry components during the Chalcolithic and the arrival of Steppe-related ancestry in the central Italian Peninsula as early as 1600 BCE, with this ancestry component increasing through time. We detect close patrilineal kinship in the burial patterns of Chalcolithic commingled cave burials and a shift away from this in the Bronze Age (2200-900 BCE) along with lowered runs of homozygosity, which may reflect larger changes in population structure. Finally, we find no evidence that the arrival of Steppe-related ancestry in Central Italy directly led to changes in frequency of 115 phenotypes present in the dataset, rather that the post-Roman Imperial period had a stronger influence, particularly on the frequency of variants associated with protection against Hansen's disease (leprosy). Our study provides a closer look at local dynamics of demography and phenotypic shifts as they occurred as part of a broader phenomenon of widespread admixture during the Chalcolithic/Bronze Age transition.


Assuntos
DNA Antigo , Genoma Humano/genética , Migração Humana/história , Conjuntos de Dados como Assunto , Genética Populacional , Genômica , História Antiga , Humanos , Itália , Hanseníase/genética , Fenótipo
8.
Curr Biol ; 31(11): 2484-2493.e7, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33887180

RESUMO

Before the end of the Last Glacial Maximum (LGM, ∼16.5 ka ago)1 set in motion major shifts in human culture and population structure,2 a consistent change in lithic technology, material culture, settlement pattern, and adaptive strategies is recorded in Southern Europe at ∼18-17 ka ago. In this time frame, the landscape of Northeastern Italy changed considerably, and the retreat of glaciers allowed hunter-gatherers to gradually recolonize the Alps.3-6 Change within this renewed cultural frame (i.e., during the Late Epigravettian phase) is currently associated with migrations favored by warmer climate linked to the Bølling-Allerød onset (14.7 ka ago),7-11 which replaced earlier genetic lineages with ancestry found in an individual who lived ∼14 ka ago at Riparo Villabruna, Italy, and shared among different contexts (Villabruna Cluster).9 Nevertheless, these dynamics and their chronology are still far from being disentangled due to fragmentary evidence for long-distance interactions across Europe.12 Here, we generate new genomic data from a human mandible uncovered at Riparo Tagliente (Veneto, Italy), which we directly dated to 16,980-16,510 cal BP (2σ). This individual, affected by focal osseous dysplasia, is genetically affine to the Villabruna Cluster. Our results therefore backdate by at least 3 ka the diffusion in Southern Europe of a genetic component linked to Balkan/Anatolian refugia, previously believed to have spread during the later Bølling/Allerød event. In light of the new genetic evidence, this population replacement chronologically coincides with the very emergence of major cultural transitions in Southern and Western Europe.


Assuntos
Migração Humana , Camada de Gelo , Clima , Europa (Continente) , Humanos , Ocupações
9.
Am J Hum Genet ; 107(1): 149-157, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32470374

RESUMO

The Iron and Classical Ages in the Near East were marked by population expansions carrying cultural transformations that shaped human history, but the genetic impact of these events on the people who lived through them is little-known. Here, we sequenced the whole genomes of 19 individuals who each lived during one of four time periods between 800 BCE and 200 CE in Beirut on the Eastern Mediterranean coast at the center of the ancient world's great civilizations. We combined these data with published data to traverse eight archaeological periods and observed any genetic changes as they arose. During the Iron Age (∼1000 BCE), people with Anatolian and South-East European ancestry admixed with people in the Near East. The region was then conquered by the Persians (539 BCE), who facilitated movement exemplified in Beirut by an ancient family with Egyptian-Lebanese admixed members. But the genetic impact at a population level does not appear until the time of Alexander the Great (beginning 330 BCE), when a fusion of Asian and Near Easterner ancestry can be seen, paralleling the cultural fusion that appears in the archaeological records from this period. The Romans then conquered the region (31 BCE) but had little genetic impact over their 600 years of rule. Finally, during the Ottoman rule (beginning 1516 CE), Caucasus-related ancestry penetrated the Near East. Thus, in the past 4,000 years, three limited admixture events detectably impacted the population, complementing the historical records of this culturally complex region dominated by the elite with genetic insights from the general population.


Assuntos
DNA/genética , Genética Populacional/história , Egito , Etnicidade/genética , Etnicidade/história , Genoma Humano/genética , Haplótipos/genética , História Antiga , Migração Humana/história , Humanos , Oriente Médio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...