Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
JCO Clin Cancer Inform ; 8: e2300205, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38723213

RESUMO

PURPOSE: Decision about the optimal timing of a treatment procedure in patients with hematologic neoplasms is critical, especially for cellular therapies (most including allogeneic hematopoietic stem-cell transplantation [HSCT]). In the absence of evidence from randomized trials, real-world observational data become beneficial to study the effect of the treatment timing. In this study, a framework to estimate the expected outcome after an intervention in a time-to-event scenario is developed, with the aim of optimizing the timing in a personalized manner. METHODS: Retrospective real-world data are leveraged to emulate a target trial for treatment timing using multistate modeling and microsimulation. This case study focuses on myelodysplastic syndromes, serving as a prototype for rare cancers characterized by a heterogeneous clinical course and complex genomic background. A cohort of 7,118 patients treated according to conventional available treatments/evidence across Europe and United States is analyzed. The primary clinical objective is to determine the ideal timing for HSCT, the only curative option for these patients. RESULTS: This analysis enabled us to identify the most appropriate time frames for HSCT on the basis of each patient's unique profile, defined by a combination relevant patients' characteristics. CONCLUSION: The developed methodology offers a structured framework to address a relevant clinical issue in the field of hematology. It makes several valuable contributions: (1) novel insights into how to develop decision models to identify the most favorable HSCT timing, (2) evidence to inform clinical decisions in a real-world context, and (3) the incorporation of complex information into decision making. This framework can be applied to provide medical insights for clinical issues that cannot be adequately addressed through randomized clinical trials.


Assuntos
Neoplasias Hematológicas , Transplante de Células-Tronco Hematopoéticas , Medicina de Precisão , Transplante Homólogo , Humanos , Transplante de Células-Tronco Hematopoéticas/métodos , Neoplasias Hematológicas/terapia , Transplante Homólogo/métodos , Masculino , Pessoa de Meia-Idade , Feminino , Medicina de Precisão/métodos , Adulto , Idoso , Estudos Retrospectivos , Síndromes Mielodisplásicas/terapia , Adulto Jovem
2.
J Clin Oncol ; : JCO2302175, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38723212

RESUMO

PURPOSE: Allogeneic hematopoietic stem-cell transplantation (HSCT) is the only potentially curative treatment for patients with myelodysplastic syndromes (MDS). Several issues must be considered when evaluating the benefits and risks of HSCT for patients with MDS, with the timing of transplantation being a crucial question. Here, we aimed to develop and validate a decision support system to define the optimal timing of HSCT for patients with MDS on the basis of clinical and genomic information as provided by the Molecular International Prognostic Scoring System (IPSS-M). PATIENTS AND METHODS: We studied a retrospective population of 7,118 patients, stratified into training and validation cohorts. A decision strategy was built to estimate the average survival over an 8-year time horizon (restricted mean survival time [RMST]) for each combination of clinical and genomic covariates and to determine the optimal transplantation policy by comparing different strategies. RESULTS: Under an IPSS-M based policy, patients with either low and moderate-low risk benefited from a delayed transplantation policy, whereas in those belonging to moderately high-, high- and very high-risk categories, immediate transplantation was associated with a prolonged life expectancy (RMST). Modeling decision analysis on IPSS-M versus conventional Revised IPSS (IPSS-R) changed the transplantation policy in a significant proportion of patients (15% of patient candidate to be immediately transplanted under an IPSS-R-based policy would benefit from a delayed strategy by IPSS-M, whereas 19% of candidates to delayed transplantation by IPSS-R would benefit from immediate HSCT by IPSS-M), resulting in a significant gain-in-life expectancy under an IPSS-M-based policy (P = .001). CONCLUSION: These results provide evidence for the clinical relevance of including genomic features into the transplantation decision making process, allowing personalizing the hazards and effectiveness of HSCT in patients with MDS.

3.
Nucleic Acids Res ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597676

RESUMO

Chromatin modifiers are emerging as major determinants of many types of cancers, including Anaplastic Large Cell Lymphomas (ALCL), a family of highly heterogeneous T-cell lymphomas for which therapeutic options are still limited. HELLS is a multifunctional chromatin remodeling protein that affects genomic instability by participating in the DNA damage response. Although the transcriptional function of HELLS has been suggested, no clues on how HELLS controls transcription are currently available. In this study, by integrating different multi-omics and functional approaches, we characterized the transcriptional landscape of HELLS in ALCL. We explored the clinical impact of its transcriptional program in a large cohort of 44 patients with ALCL. We demonstrated that HELLS, loaded at the level of intronic regions of target promoters, facilitates RNA Polymerase II (RNAPII) progression along the gene bodies by reducing the persistence of co-transcriptional R-loops and promoting DNA damage resolution. Importantly, selective knockdown of HELLS sensitizes ALCL cells to different chemotherapeutic agents, showing a synergistic effect. Collectively, our work unveils the role of HELLS in acting as a gatekeeper of ALCL genome stability providing a rationale for drug design.

4.
Nat Commun ; 15(1): 2567, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519469

RESUMO

Non-small-cell lung carcinoma (NSCLC) is the most common lung cancer and one of the pioneer tumors in which immunotherapy has radically changed patients' outcomes. However, several issues are emerging and their implementation is required to optimize immunotherapy-based protocols. In this work, we investigate the ability of the Bromodomain and Extra-Terminal protein inhibitors (BETi) to stimulate a proficient anti-tumor immune response toward NSCLC. By using in vitro, ex-vivo, and in vivo models, we demonstrate that these epigenetic drugs specifically enhance Natural Killer (NK) cell cytotoxicity. BETi down-regulate a large set of NK inhibitory receptors, including several immune checkpoints (ICs), that are direct targets of the transcriptional cooperation between the BET protein BRD4 and the transcription factor SMAD3. Overall, BETi orchestrate an epigenetic reprogramming that leads to increased recognition of tumor cells and the killing ability of NK cells. Our results unveil the opportunity to exploit and repurpose these drugs in combination with immunotherapy.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Células Matadoras Naturais , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteínas que Contêm Bromodomínio
5.
Cell Death Dis ; 14(11): 752, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980331

RESUMO

Long non-coding RNAs (lncRNAs) are transcripts without coding potential that are pervasively expressed from the genome and have been increasingly reported to play crucial roles in all aspects of cell biology. They have been also heavily implicated in cancer development and progression, with both oncogenic and tumor suppressor functions. In this work, we identified and characterized a novel lncRNA, TAZ-AS202, expressed from the TAZ genomic locus and exerting pro-oncogenic functions in non-small cell lung cancer. TAZ-AS202 expression is under the control of YAP/TAZ-containing transcriptional complexes. We demonstrated that TAZ-AS202 is overexpressed in lung cancer tissue, compared with surrounding lung epithelium. In lung cancer cell lines TAZ-AS202 promotes cell migration and cell invasion. TAZ-AS202 regulates the expression of a set of genes belonging to cancer-associated pathways, including WNT and EPH-Ephrin signaling. The molecular mechanism underlying TAZ-AS202 function does not involve change of TAZ expression or activity, but increases the protein level of the transcription factor E2F1, which in turn regulates the expression of a large set of target genes, including the EPHB2 receptor. Notably, the silencing of both E2F1 and EPHB2 recapitulates TAZ-AS202 silencing cellular phenotype, indicating that they are essential mediators of its activity. Overall, this work unveiled a new regulatory mechanism that, by increasing E2F1 protein, modifies the non-small cell lung cancer cells transcriptional program, leading to enhanced aggressiveness features. The TAZ-AS202/E2F1/EPHB2 axis may be the target for new therapeutic strategies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Neoplasias Pulmonares/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Efrinas/genética , Efrinas/metabolismo , Linhagem Celular Tumoral , Pulmão/metabolismo , Regulação Neoplásica da Expressão Gênica/genética
6.
Mol Oncol ; 17(12): 2728-2742, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37408506

RESUMO

Mortality from vmelanoma is associated with metastatic disease, but the mechanisms leading to spreading of the cancer cells remain obscure. Spatial profiling revealed that melanoma is characterized by a high degree of heterogeneity, which is established by the ability of melanoma cells to switch between different phenotypical stages. This plasticity, likely a heritage from embryonic pathways, accounts for a relevant part of the metastatic potential of these lesions, and requires the rapid and efficient reorganization of the transcriptional landscape of melanoma cells. A large part of the non-coding genome cooperates to control gene expression, specifically through the activity of enhancers (ENHs). In this study, we aimed to identify ex vivo the network of active ENHs and to outline their cooperative interactions in supporting transcriptional adaptation during melanoma metastatic progression. We conducted a genome-wide analysis to map active ENHs distribution in a retrospective cohort of 39 melanoma patients, comparing the profiles obtained in primary (N = 19) and metastatic (N = 20) melanoma lesions. Unsupervised clustering showed that the profile for acetylated histone H3 at lysine 27 (H3K27ac) efficiently segregates lesions into three different clusters corresponding to progressive stages of the disease. We reconstructed the map of super-ENHs (SEs) and cooperative ENHs that associate with metastatic progression in melanoma, which showed that cooperation among regulatory elements is a mandatory requirement for transcriptional plasticity. We also showed that these elements carry out specialized and non-redundant functions, and indicated the existence of a hierarchical organization, with SEs on top as masterminds of the entire transcriptional program and classical ENHs as executors. By providing an innovative vision of how the chromatin landscape of melanoma works during metastatic spreading, our data also point out the need to integrate functional profiling in the analysis of cancer lesions to increase definition and improve interpretation of tumor heterogeneity.


Assuntos
Melanoma , Humanos , Melanoma/genética , Melanoma/metabolismo , Estudos Retrospectivos , Histonas/metabolismo , Cromatina
7.
JCO Clin Cancer Inform ; 7: e2300021, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37390377

RESUMO

PURPOSE: Synthetic data are artificial data generated without including any real patient information by an algorithm trained to learn the characteristics of a real source data set and became widely used to accelerate research in life sciences. We aimed to (1) apply generative artificial intelligence to build synthetic data in different hematologic neoplasms; (2) develop a synthetic validation framework to assess data fidelity and privacy preservability; and (3) test the capability of synthetic data to accelerate clinical/translational research in hematology. METHODS: A conditional generative adversarial network architecture was implemented to generate synthetic data. Use cases were myelodysplastic syndromes (MDS) and AML: 7,133 patients were included. A fully explainable validation framework was created to assess fidelity and privacy preservability of synthetic data. RESULTS: We generated MDS/AML synthetic cohorts (including information on clinical features, genomics, treatment, and outcomes) with high fidelity and privacy performances. This technology allowed resolution of lack/incomplete information and data augmentation. We then assessed the potential value of synthetic data on accelerating research in hematology. Starting from 944 patients with MDS available since 2014, we generated a 300% augmented synthetic cohort and anticipated the development of molecular classification and molecular scoring system obtained many years later from 2,043 to 2,957 real patients, respectively. Moreover, starting from 187 MDS treated with luspatercept into a clinical trial, we generated a synthetic cohort that recapitulated all the clinical end points of the study. Finally, we developed a website to enable clinicians generating high-quality synthetic data from an existing biobank of real patients. CONCLUSION: Synthetic data mimic real clinical-genomic features and outcomes, and anonymize patient information. The implementation of this technology allows to increase the scientific use and value of real data, thus accelerating precision medicine in hematology and the conduction of clinical trials.


Assuntos
Hematologia , Leucemia Mieloide Aguda , Humanos , Medicina de Precisão , Inteligência Artificial , Algoritmos
8.
Haematologica ; 108(12): 3333-3346, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37381763

RESUMO

Long non-coding RNA (lncRNA) are emerging as powerful and versatile regulators of transcriptional programs and distinctive biomarkers of progression of T-cell lymphoma. Their role in the aggressive anaplastic lymphoma kinase-negative (ALK-) subtype of anaplastic large cell lymphoma (ALCL) has been elucidated only in part. Starting from our previously identified ALCL-associated lncRNA signature and performing digital gene expression profiling of a retrospective cohort of ALCL, we defined an 11 lncRNA signature able to discriminate among ALCL subtypes. We selected a not previously characterized lncRNA, MTAAT, with preferential expression in ALK- ALCL, for molecular and functional studies. We demonstrated that lncRNA MTAAT contributes to an aberrant mitochondrial turnover restraining mitophagy and promoting cellular proliferation. Functionally, lncRNA MTAAT acts as a repressor of a set of genes related to mitochondrial quality control via chromatin reorganization. Collectively, our work demonstrates the transcriptional role of lncRNA MTAAT in orchestrating a complex transcriptional program sustaining the progression of ALK- ALCL.


Assuntos
Linfoma Anaplásico de Células Grandes , Linfoma de Células T Periférico , RNA Longo não Codificante , Humanos , Receptores Proteína Tirosina Quinases/genética , Quinase do Linfoma Anaplásico/genética , RNA Longo não Codificante/genética , Mitofagia/genética , Estudos Retrospectivos , Linfoma Anaplásico de Células Grandes/patologia
9.
J Clin Oncol ; 41(15): 2827-2842, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-36930857

RESUMO

PURPOSE: Myelodysplastic syndromes (MDS) are heterogeneous myeloid neoplasms in which a risk-adapted treatment strategy is needed. Recently, a new clinical-molecular prognostic model, the Molecular International Prognostic Scoring System (IPSS-M) was proposed to improve the prediction of clinical outcome of the currently available tool (Revised International Prognostic Scoring System [IPSS-R]). We aimed to provide an extensive validation of IPSS-M. METHODS: A total of 2,876 patients with primary MDS from the GenoMed4All consortium were retrospectively analyzed. RESULTS: IPSS-M improved prognostic discrimination across all clinical end points with respect to IPSS-R (concordance was 0.81 v 0.74 for overall survival and 0.89 v 0.76 for leukemia-free survival, respectively). This was true even in those patients without detectable gene mutations. Compared with the IPSS-R based stratification, the IPSS-M risk group changed in 46% of patients (23.6% and 22.4% of subjects were upstaged and downstaged, respectively).In patients treated with hematopoietic stem cell transplantation (HSCT), IPSS-M significantly improved the prediction of the risk of disease relapse and the probability of post-transplantation survival versus IPSS-R (concordance was 0.76 v 0.60 for overall survival and 0.89 v 0.70 for probability of relapse, respectively). In high-risk patients treated with hypomethylating agents (HMA), IPSS-M failed to stratify individual probability of response; response duration and probability of survival were inversely related to IPSS-M risk.Finally, we tested the accuracy in predicting IPSS-M when molecular information was missed and we defined a minimum set of 15 relevant genes associated with high performance of the score. CONCLUSION: IPSS-M improves MDS prognostication and might result in a more effective selection of candidates to HSCT. Additional factors other than gene mutations can be involved in determining HMA sensitivity. The definition of a minimum set of relevant genes may facilitate the clinical implementation of the score.


Assuntos
Síndromes Mielodisplásicas , Recidiva Local de Neoplasia , Humanos , Prognóstico , Estudos Retrospectivos , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/terapia , Fatores de Risco
10.
Cells ; 12(5)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36899930

RESUMO

BACKGROUND: Endometrial cancer (EC) is the most common gynecologic tumor and the world's fourth most common cancer in women. Most patients respond to first-line treatments and have a low risk of recurrence, but refractory patients, and those with metastatic cancer at diagnosis, remain with no treatment options. Drug repurposing aims to discover new clinical indications for existing drugs with known safety profiles. It provides ready-to-use new therapeutic options for highly aggressive tumors for which standard protocols are ineffective, such as high-risk EC. METHODS: Here, we aimed at defining new therapeutic opportunities for high-risk EC using an innovative and integrated computational drug repurposing approach. RESULTS: We compared gene-expression profiles, from publicly available databases, of metastatic and non-metastatic EC patients being metastatization the most severe feature of EC aggressiveness. A comprehensive analysis of transcriptomic data through a two-arm approach was applied to obtain a robust prediction of drug candidates. CONCLUSIONS: Some of the identified therapeutic agents are already successfully used in clinical practice to treat other types of tumors. This highlights the potential to repurpose them for EC and, therefore, the reliability of the proposed approach.


Assuntos
Reposicionamento de Medicamentos , Neoplasias do Endométrio , Humanos , Feminino , Reposicionamento de Medicamentos/métodos , Reprodutibilidade dos Testes , Neoplasias do Endométrio/patologia , Perfilação da Expressão Gênica , Transcriptoma
11.
Cell Death Dis ; 14(2): 99, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765037

RESUMO

Anaplastic Thyroid Cancer (ATC) is the most aggressive and de-differentiated subtype of thyroid cancer. Many studies hypothesized that ATC derives from Differentiated Thyroid Carcinoma (DTC) through a de-differentiation process triggered by specific molecular events still largely unknown. E2F7 is an atypical member of the E2F family. Known as cell cycle inhibitor and keeper of genomic stability, in specific contexts its function is oncogenic, guiding cancer progression. We performed a meta-analysis on 279 gene expression profiles, from 8 Gene Expression Omnibus patient samples datasets, to explore the causal relationship between DTC and ATC. We defined 3 specific gene signatures describing the evolution from normal thyroid tissue to DTC and ATC and validated them in a cohort of human surgically resected ATCs collected in our Institution. We identified E2F7 as a key player in the DTC-ATC transition and showed in vitro that its down-regulation reduced ATC cells' aggressiveness features. RNA-seq and ChIP-seq profiling allowed the identification of the E2F7 specific gene program, which is mainly related to cell cycle progression and DNA repair ability. Overall, this study identified a signature describing DTC de-differentiation toward ATC subtype and unveiled an E2F7-dependent transcriptional program supporting this process.


Assuntos
Adenocarcinoma , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Carcinoma Anaplásico da Tireoide/genética , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Adenocarcinoma/genética , Diferenciação Celular/genética , Oncogenes/genética , Fator de Transcrição E2F7/genética
12.
NAR Cancer ; 4(3): zcac024, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35910692

RESUMO

Malignant pleural mesothelioma (MPM) is a rare and incurable cancer, which incidence is increasing in many countries. MPM escapes the classical genetic model of cancer evolution, lacking a distinctive genetic fingerprint. Omics profiling revealed extensive heterogeneity failing to identify major vulnerabilities and restraining development of MPM-oriented therapies. Here, we performed a multilayered analysis based on a functional genome-wide CRISPR/Cas9 screening integrated with patients molecular and clinical data, to identify new non-genetic vulnerabilities of MPM. We identified a core of 18 functionally-related genes as essential for MPM cells. The chromatin reader KAP1 emerged as a dependency of MPM. We showed that KAP1 supports cell growth by orchestrating the expression of a G2/M-specific program, ensuring mitosis correct execution. Targeting KAP1 transcriptional function, by using CDK9 inhibitors resulted in a dramatic loss of MPM cells viability and shutdown of the KAP1-mediated program. Validation analysis on two independent MPM-patients sets, including a consecutive, retrospective cohort of 97 MPM, confirmed KAP1 as new non-genetic dependency of MPM and proved the association of its dependent gene program with reduced patients' survival probability. Overall these data: provided new insights into the biology of MPM delineating KAP1 and its target genes as building blocks of its clinical aggressiveness.

14.
J Pathol Clin Res ; 8(4): 307-312, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35318822

RESUMO

Tumor-associated macrophages (TAMs) have a unique favorable effect on the prognosis of colorectal cancer (CRC), although their association with stage-specific outcomes remains unclear. We assessed the densities of CD68+ and CD163+ TAMs at the invasive front of resected CRC stage III CRC from 236 patients, 165 of whom received post-surgical FOLFOX treatment, and their relationship with disease-free survival (DFS). Associations between macrophage mRNAs and clinical outcome were investigated in silico in 59 stage III CRC and FOLFOX-treated patients from The Cancer Genome Atlas (TCGA). Biological interactions of SW480 and HT29 cells and macrophages with FOLFOX were tested in co-culture models. Low TAM densities were associated with shorter DFS among patients receiving FOLFOX (CD68+ , p = 0.0001; CD163+ , p = 0.0008) but not among those who were untreated. By multivariate Cox analysis, only low TAM (CD68+ , p = 0.001; CD163+ , p = 0.002) and nodal status (CD68+ , p = 0.009; CD163+ , p = 0.007) maintained an independent predictive value. In the TCGA cohort, high CD68 mRNA levels were associated with better outcome (p = 0.02). Macrophages enhanced FOLFOX cytotoxicity on CRC cells (p < 0.01), and drugs oriented macrophage polarization from M2- to M1-phenotype. Low TAM densities identify stage III CRC patients at higher risk of recurrence after adjuvant therapy, and macrophages can augment the chemo-sensitivity of micro-metastases.


Assuntos
Neoplasias Colorretais , Macrófagos Associados a Tumor , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Humanos , Macrófagos/patologia , Prognóstico , Intervalo Livre de Progressão
15.
J Exp Clin Cancer Res ; 41(1): 108, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35337349

RESUMO

BACKGROUND: Anaplastic Thyroid Cancer (ATC) is an undifferentiated and aggressive tumor that often originates from well-Differentiated Thyroid Carcinoma (DTC) through a trans-differentiation process. Epithelial-to-Mesenchymal Transition (EMT) is recognized as one of the major players of this process. OVOL2 is a transcription factor (TF) that promotes epithelial differentiation and restrains EMT during embryonic development. OVOL2 loss in some types of cancers is linked to aggressiveness and poor prognosis. Here, we aim to clarify the unexplored role of OVOL2 in ATC. METHODS: Gene expression analysis in thyroid cancer patients and cell lines showed that OVOL2 is mainly associated with epithelial features and its expression is deeply impaired in ATC. To assess OVOL2 function, we established an OVOL2-overexpression model in ATC cell lines and evaluated its effects by analyzing gene expression, proliferation, invasion and migration abilities, cell cycle, specific protein localization through immunofluorescence staining. RNA-seq profiling showed that OVOL2 controls a complex network of genes converging on cell cycle and mitosis regulation and Chromatin Immunoprecipitation identified new OVOL2 target genes. RESULTS: Coherently with its reported function, OVOL2 re-expression restrained EMT and aggressiveness in ATC cells. Unexpectedly, we observed that it caused G2/M block, a consequent reduction in cell proliferation and an increase in cell death. This phenotype was associated to generalized abnormalities in the mitotic spindle structure and cytoskeletal organization. By RNA-seq experiments, we showed that many pathways related to cytoskeleton and migration, cell cycle and mitosis are profoundly affected by OVOL2 expression, in particular the RHO-GTPase pathway resulted as the most interesting. We demonstrated that RHO GTPase pathway is the central hub of OVOL2-mediated program in ATC and that OVOL2 transcriptionally inhibits RhoU and RhoJ. Silencing of RhoU recapitulated the OVOL2-driven phenotype pointing to this protein as a crucial target of OVOL2 in ATC. CONCLUSIONS: Collectively, these data describe the role of OVOL2 in ATC and uncover a novel function of this TF in inhibiting the RHO GTPase pathway interlacing its effects on EMT, cytoskeleton dynamics and mitosis.


Assuntos
Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Mitose , Gravidez , Carcinoma Anaplásico da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Fatores de Transcrição/genética , Proteínas rho de Ligação ao GTP/genética
16.
Nat Commun ; 12(1): 6013, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650038

RESUMO

The transcription factor NF-Y promotes cell proliferation and its activity often declines during differentiation through the regulation of NF-YA, the DNA binding subunit of the complex. In stem cell compartments, the shorter NF-YA splice variant is abundantly expressed and sustains their expansion. Here, we report that satellite cells, the stem cell population of adult skeletal muscle necessary for its growth and regeneration, express uniquely the longer NF-YA isoform, majorly associated with cell differentiation. Through the generation of a conditional knock out mouse model that selectively deletes the NF-YA gene in satellite cells, we demonstrate that NF-YA expression is fundamental to preserve the pool of muscle stem cells and ensures robust regenerative response to muscle injury. In vivo and ex vivo, satellite cells that survive to NF-YA loss exit the quiescence and are rapidly committed to early differentiation, despite delayed in the progression towards later states. In vitro results demonstrate that NF-YA-depleted muscle stem cells accumulate DNA damage and cannot properly differentiate. These data highlight a new scenario in stem cell biology for NF-Y activity, which is required for efficient myogenic differentiation.


Assuntos
Fator de Ligação a CCAAT/metabolismo , Músculo Esquelético/metabolismo , Regeneração/fisiologia , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fator de Ligação a CCAAT/genética , Diferenciação Celular/genética , Proliferação de Células , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Isoformas de Proteínas/genética , Regeneração/genética
17.
Cancers (Basel) ; 13(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34298691

RESUMO

Lung cancer is the leading cause of cancer-related human death. It is a heterogeneous disease, classified in two main histotypes, small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC), which is further subdivided into squamous-cell carcinoma (SCC) and adenocarcinoma (AD) subtypes. Despite the introduction of innovative therapeutics, mainly designed to specifically treat AD patients, the prognosis of lung cancer remains poor. In particular, available treatments for SCLC and SCC patients are currently limited to platinum-based chemotherapy and immune checkpoint inhibitors. In this work, we used an integrative approach to identify novel vulnerabilities in lung cancer. First, we compared the data from a CRISPR/Cas9 dependency screening performed in our laboratory with Cancer Dependency Map Project data, essentiality comprising information on 73 lung cancer cell lines. Next, to identify relevant therapeutic targets, we integrated dependency data with pharmacological data and TCGA gene expression information. Through this analysis, we identified CSNK1A1, KDM2A, and LTB4R2 as relevant druggable essentiality genes in lung cancer. We validated the antiproliferative effect of genetic or pharmacological inhibition of these genes in two lung cancer cell lines. Overall, our results identified new vulnerabilities associated with different lung cancer histotypes, laying the basis for the development of new therapeutic strategies.

19.
Cell Death Dis ; 12(1): 130, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504766

RESUMO

Deregulation of chromatin modifiers, including DNA helicases, is emerging as one of the mechanisms underlying the transformation of anaplastic lymphoma kinase negative (ALK-) anaplastic large cell lymphoma (ALCL). We recently identified the DNA-helicase HELLS as central for proficient ALK-ALCL proliferation and progression. Here we assessed in detail its function by performing RNA-sequencing profiling coupled with bioinformatic prediction to identify HELLS targets and transcriptional cooperators. We demonstrated that HELLS, together with the transcription factor YY1, contributes to an appropriate cytokinesis via the transcriptional regulation of genes involved in cleavage furrow regulation. Binding target promoters, HELLS primes YY1 recruitment and transcriptional activation of cytoskeleton genes including the small GTPases RhoA and RhoU and their effector kinase Pak2. Single or multiple knockdowns of these genes reveal that RhoA and RhoU mediate HELLS effects on cell proliferation and cell division of ALK-ALCLs. Collectively, our work demonstrates the transcriptional role of HELLS in orchestrating a complex transcriptional program sustaining neoplastic features of ALK-ALCL.


Assuntos
Citocinese/genética , DNA Helicases/metabolismo , Linfoma Anaplásico de Células Grandes/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , DNA Helicases/genética , Humanos , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/patologia , Ativação Transcricional , Transfecção
20.
Thyroid ; 31(2): 247-263, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32495722

RESUMO

Background: Papillary thyroid cancers (PTCs) are common, usually indolent malignancies. Still, a small but significant percentage of patients have aggressive tumors and develop distant metastases leading to death. Currently, it is not possible to discriminate aggressive lesions due to lack of prognostic markers. Long noncoding RNAs (lncRNAs), which are selectively expressed in a context-dependent manner, are expected to represent a new landscape to search for molecular discriminants. Transforming growth factor ß (TGFß) is a multifunctional cytokine that fosters epithelial-to-mesenchymal transition and metastatic spreading. In PTCs, it triggers the expression of the metastatic marker Cadherin 6 (CDH6). Here, we investigated the TGFß-dependent lncRNAs that may cooperate to potentiate PTC aggressiveness. Methods: We used a genome-wide approach to map enhancer (ENH)-associated lncRNAs under TGFß control. Linc00941 was selected and validated using functional in vitro assays. A combined approach using bioinformatic analyses of the thyroid cancer (THCA)-the cancer genome atlas (TCGA) dataset and RNA-seq analysis was used to identify the processes in which linc00941 was involved in and the genes under its regulation. Correlation with clinical data was performed to evaluate the potential of this lncRNA and its targets as prognostic markers in THCA. Results: Linc00941 was identified as transcribed starting from one of the TGFß-induced ENHs. Linc00941 expression was significantly higher in aggressive cancer both in the TCGA dataset and in a separate validation cohort from our institution. Loss of function assays for linc00941 showed that it promotes response to stimuli and invasiveness while restraining proliferation in PTC cells, a typical phenotype of metastatic cells. From the integration of TCGA data and linc00941 knockdown RNA-seq profiling, we identified 77 genes under the regulation of this lncRNA. Among these, we found the prometastatic gene CDH6. Linc00941 knockdown partially recapitulates the effects observed upon CDH6 silencing, promoting cell cytoskeleton and membrane adhesions rearrangements and autophagy. The combined expression of CDH6 and linc00941 is a distinctive feature of highly aggressive PTC lesions. Conclusions: Our data provide new insights into the biology driving metastasis in PTCs and highlight how lncRNAs cooperate with coding transcripts to sustain these processes.


Assuntos
Caderinas/metabolismo , Movimento Celular , RNA Longo não Codificante/metabolismo , Câncer Papilífero da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Caderinas/genética , Linhagem Celular Tumoral , Proliferação de Células , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Invasividade Neoplásica , RNA Longo não Codificante/genética , Transdução de Sinais , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/secundário , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Fator de Crescimento Transformador beta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...