Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Beilstein J Nanotechnol ; 15: 279-296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476324

RESUMO

Raman spectroscopy is a widely used technique to characterize nanomaterials because of its convenience, non-destructiveness, and sensitivity to materials change. The primary purpose of this work is to determine via Raman spectroscopy the average thickness of MoS2 thin films synthesized by direct liquid injection pulsed-pressure chemical vapor deposition (DLI-PP-CVD). Such samples are constituted of nanoflakes (with a lateral size of typically 50 nm, i.e., well below the laser spot size), with possibly a distribution of thicknesses and twist angles between stacked layers. As an essential preliminary, we first reassess the applicability of different Raman criteria to determine the thicknesses (or layer number, N) of MoS2 flakes from measurements performed on reference samples, namely well-characterized mechanically exfoliated or standard chemical vapor deposition MoS2 large flakes deposited on 90 ± 6 nm SiO2 on Si substrates. Then, we discuss the applicability of the same criteria for significantly different DLI-PP-CVD MoS2 samples with average thicknesses ranging from sub-monolayer up to three layers. Finally, an original procedure based on the measurement of the intensity of the layer breathing modes is proposed to evaluate the surface coverage for each N (i.e., the ratio between the surface covered by exactly N layers and the total surface) in DLI-PP-CVD MoS2 samples.

2.
Nanoscale ; 11(34): 16092-16102, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31432840

RESUMO

The search for new relatively easy physicochemical methods for the structural identification of carbon nanotubes represents a key challenge. Here, analyzing the experimental data on double-walled carbon nanotubes (DWCNTs) obtained by us and taken from the literature, we have expressed the magnitude of elastic coupling between two tubular walls forming a DWCNT as a simple function dependent not only on DWCNT diameters but also on the difference between the chirality angles of the constituent nanotubes. To get this quite unexpected result, which allows us to relate more precisely the structural parameters of a DWCNT with frequencies of its radial breathing-like modes (RBLM), we have developed a new model for the RBLM dynamics that takes into account a possible deposition of water molecules from ambient air onto the DWCNT surface. The model constructed allows us to predict the higher prevalence of DWCNTs comprising two walls with identical handedness. The application of the results obtained for the identification of DWCNTs is also considered.

3.
Nat Commun ; 4: 2542, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24071824

RESUMO

The optical properties of single-wall carbon nanotubes are very promising for developing novel opto-electronic components and sensors with applications in many fields. Despite numerous studies performed using photoluminescence or Raman and Rayleigh scattering, knowledge of their optical response is still partial. Here we determine using spatial modulation spectroscopy, over a broad optical spectral range, the spectrum and amplitude of the absorption cross-section of individual semiconducting single-wall carbon nanotubes. These quantitative measurements permit determination of the oscillator strength of the different excitonic resonances and their dependencies on the excitonic transition and type of semiconducting nanotube. A non-resonant background is also identified and its cross-section comparable to the ideal graphene optical absorbance. Furthermore, investigation of the same single-wall nanotube either free standing or lying on a substrate shows large broadening of the excitonic resonances with increase of oscillator strength, as well as stark weakening of polarization-dependent antenna effects, due to nanotube-substrate interaction.

4.
Langmuir ; 29(18): 5581-8, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23574041

RESUMO

The self-assembly of a bis-urea phenylene-bridged silsesquioxane precursor during sol-gel synthesis has been investigated by in situ infrared spectroscopy, optical microscopy, and light scattering. In particular, the evolution of the system as a function of processing time was correlated with covalent interactions associated with increasing polycondensation and noncovalent interactions such as hydrogen bonding. A comprehensive mechanism based on the hydrolysis of the phenylene-bridged organosilane precursor prior to the crystallization of the corresponding bridged silsesquioxane via H-bonding and subsequent irreversible polycondensation is proposed.


Assuntos
Compostos de Organossilício/síntese química , Ligação de Hidrogênio , Hidrólise , Estrutura Molecular , Compostos de Organossilício/química
5.
ACS Nano ; 7(1): 165-73, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23194077

RESUMO

We report in situ Raman scattering experiments on single-layer graphene (SLG) and Bernal bilayer graphene (BLG) during exposure to rubidium vapor. The G- and 2D-band evolutions with doping time are presented and analyzed. On SLG, the extended doping range scanned (up to about 10(14) electrons/cm(2)) allows the observation of three regimes in the evolution of the G-band frequency: a continuous upshift followed by a plateau and a downshift. Overall the measured evolution is interpreted as the signature of the competition between dynamic and adiabatic effects upon n-doping. Comparison of the obtained results with theoretical predictions indicates however that a substrate pinning effect occurs and inhibits charge-induced lattice expansion of SLG. At low doping, a direct link between electrostatic gating and Rb doping results is presented. For BLG, the added electrons are shown to be first confined in the top layer, but the system evolves with time toward a more symmetric repartition of the added electrons in both layers. The results obtained on BLG also confirm that the slope of the phonon dispersion close to the K point tends to be slightly reduced at low doping but suggest the occurrence of an unexpected increase of the phonon dispersion slope at higher electron concentration.


Assuntos
Grafite/química , Teste de Materiais/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Rubídio/química , Gases/química , Tamanho da Partícula , Análise Espectral Raman , Propriedades de Superfície
6.
Phys Chem Chem Phys ; 14(16): 5672-9, 2012 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-22422291

RESUMO

The crystalline structure of ureidopyrimidinone-based silane (UPY) has been determined. The local and long range order structuring of the bridged silsesquioxane (MUPY) resulting from the sol-gel hydrolysis-condensation of the former precursor has been investigated by MFTIR (Mid Fourier Transform InfraRed) combined with DFT (Density Functional Theory) and XRD (X-ray diffraction) studies. These studies showed that a long range structuring exists within the organic fragments with the transcription of the DDAA (Donor-Donor-Acceptor-Acceptor) H-bonding array from UPY to MUPY whereas a disordered siloxane network was revealed in the hybrid material.


Assuntos
Compostos de Organossilício/química , Cristalografia por Raios X , Géis/química , Hidrólise , Modelos Moleculares , Estrutura Molecular , Tamanho da Partícula , Teoria Quântica , Propriedades de Superfície , Vibração
7.
Chemistry ; 15(20): 5002-5, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19350601

RESUMO

The hydrolysis and condensation of a silylated derivative of ureidopyrimidinone led to nanostructured hybrid silica, such as that depicted, as clearly shown by powder XRD studies. The nanostructuring was directly related to molecular recognition through hydrogen bonding. By combining FTIR, solution and solid-state NMR spectroscopic data, the transcription of the hydrogen-bonding networks from the precursor to the final product was clearly evidenced.

8.
Small ; 5(4): 503-10, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19173348

RESUMO

A long-range ordered organic/inorganic material is synthesized from a bis-silane, (EtO)(3)Si-(CH(2))(3)-NHCONH-C(6)H(4)-NHCONH-(CH(2))(3)-Si(OEt)(3). This crosslinked sol-gel solid exhibits a supramolecular organization via intermolecular hydrogen bonding interactions between urea groups (-NHCONH-) and covalent siloxane bonding, triple bond Si-O-Si triple bond. Time-resolved in situ X-ray measurements (coupling small- and wide-angle X-ray scattering techniques) are performed to follow the different steps involved in the synthetic process. A new mechanism based on the crystallization of the hydrolyzed species followed by their polycondensation in solid state is proposed.


Assuntos
Siloxanas/química , Difração de Raios X/métodos , Modelos Moleculares , Espalhamento de Radiação
9.
Nano Lett ; 8(7): 1830-5, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18540661

RESUMO

Adsorption of specifically designed and geometrically constrained polyaromatic amphiphiles on single-walled carbon nanotubes (SWNTs) was found to be selective of the nanotube helicity angle. Starting from the same SWNT mixture, photoluminescence and resonant Raman spectroscopies show that a pentacenic-based amphiphile leads to the solubilization of armchair SWNTs and that a quaterrylene-based amphiphile leads to the solubilization of zigzag SWNTs. The results were predicted by the design of the two amphiphiles and are consistent with a supramolecular recognition of the nanotube graphene-type atomic structure by the aromatic part of the molecules through optimized pi-pi-stacking interactions.


Assuntos
Nanotubos de Carbono/química , Medições Luminescentes , Modelos Moleculares , Estrutura Molecular , Análise Espectral Raman
10.
J Phys Chem B ; 110(32): 15797-802, 2006 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-16898728

RESUMO

Fourier transform infrared (FTIR) spectroscopy has been used to probe the organization of the organic fragments in lamellar bridged silsesquioxanes with organic substructures based on alkylene chains of various lengths and urea groups [O1.5Si(CH2)3NHCONH(CH2)nNHCONH(CH2)3SiO1.5] (n = 6, 8-12). The structure and intermolecular interactions (hydrophobic and H-bonding) of these well-defined self-structured hybrid silicas are discussed in relation to their powder X-ray diffraction patterns. The degree of structural order is determined by the length and parity of the alkylene spacer. A concomitant enhancement in the degree of condensation of the inorganic component and a decrease in the strength of the hydrophobic interactions between the organic components are demonstrated. The strength and directionality of the H-bonding are directly correlated to the crystalllinity of the organic-inorganic hybrid materials.


Assuntos
Compostos de Organossilício/química , Dióxido de Silício/química , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Sensibilidade e Especificidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X
11.
Phys Rev Lett ; 95(21): 217401, 2005 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-16384181

RESUMO

Using electron diffraction on freestanding single-walled carbon nanotubes, we have determined the structural indices (n,m) of tubes in the diameter range from 1.4 to 3 nm. On the same freestanding tubes, we have recorded Raman spectra of the tangential modes and the radial breathing mode. For the smaller diameters (1.4-1.7 nm), these measurements confirm previously established radial breathing mode frequency versus diameter relations and would be consistent with the theoretically predicted proportionality to the inverse diameter. However, for extending the relation to larger diameters, either a yet unexplained environmental constant has to be assumed, or the linear relation has to be abandoned.

12.
Chemistry ; 11(5): 1527-37, 2005 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-15662678

RESUMO

The synthesis of four bis(trialkoxysilylated) organic molecules capable of self-assembly--(EtO)3Si(CH2)3NHCONH-(CH2)n-NHCONH(CH2)3Si(OEt)3 (n = 9-12)--associating urea functional groups and alkylidene chains of variable length is described. These compounds behave as organogelators, forming supramolecular assemblies thanks to the intermolecular hydrogen bonding of urea groups. Whereas fluoride ion-catalysed hydrolysis in ethanol in the presence of a stoichiometric amount of water produced amorphous hybrids, acid-catalysed hydrolysis in an excess of water gave rise to the formation of crystalline lamellar hybrid materials through a self-organisation process. The structural features of these nanostructured organic/inorganic hybrids were analysed by several techniques: attenuated Fourier transformed infrared (ATR-FTIR), solid-state NMR spectroscopy (13C and 29Si), scanning and transmission electron microscopy (SEM and TEM) and powder X-ray diffraction (PXRD). The reaction conditions, the hydrophobic properties of the long alkylidene chains and the hydrogen-bonding properties of the urea groups are determining factors in the formation of these self-assembled nanostructured hybrid silicas.

14.
J Org Chem ; 68(19): 7254-65, 2003 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-12968874

RESUMO

Three series of thiophene-based pi-conjugated oligomers built with different combinations of thiophene cycles and double bonds have been synthesized and characterized. The analysis of the chain length dependence of the electronic, electrochemical, and vibrational properties of the three series of oligomers has been carried out using cyclic voltammetry, UV-vis, IR, and Raman spectroscopies. These various investigations provide consistent results showing that incorporation of ethylenic linkages in an oligothiophene structure leads to a faster decrease of the HOMO-LUMO gap with chain extension due to the combined effects of enhanced planarity and lower overall aromatic character of the system. Although the incorporation of two consecutive double bonds in the system leads to a stabilization of the dicationic state, this structural modification does not produce the expected further decrease of the HOMO-LUMO gap at large chain extension. This phenomenon is discussed on the basis of an interplay between aromaticity and bond length alternation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...