Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(3): e0150223, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38315015

RESUMO

Capsid assembly is critical in the hepatitis B virus (HBV) life cycle, mediated by the viral core protein. Capsid assembly is the target for new anti-viral therapeutics known as capsid assembly modulators (CAMs) of which the CAM-aberrant (CAM-A) class induces aberrant shaped core protein structures and leads to hepatocyte cell death. This study aimed to identify the mechanism of action of CAM-A modulators leading to HBV-infected hepatocyte elimination where CAM-A-mediated hepatitis B surface antigen (HBsAg) reduction was evaluated in a stable HBV replicating cell line and in AAV-HBV-transduced C57BL/6, C57BL/6 SCID, and HBV-infected chimeric mice with humanized livers. Results showed that in vivo treatment with CAM-A modulators induced pronounced reductions in hepatitis B e antigen (HBeAg) and HBsAg, associated with a transient alanine amino transferase (ALT) increase. Both HBsAg and HBeAg reductions and ALT increase were delayed in C57BL/6 SCID and chimeric mice, suggesting that adaptive immune responses may indirectly contribute. However, CD8+ T cell depletion in transduced wild-type mice did not impact antigen reduction, indicating that CD8+ T cell responses are not essential. Transient ALT elevation in AAV-HBV-transduced mice coincided with a transient increase in endoplasmic reticulum stress and apoptosis markers, followed by detection of a proliferation marker. Microarray data revealed antigen presentation pathway (major histocompatibility complex class I molecules) upregulation, overlapping with the apoptosis. Combination treatment with HBV-specific siRNA demonstrated that CAM-A-mediated HBsAg reduction is dependent on de novo core protein translation. To conclude, CAM-A treatment eradicates HBV-infected hepatocytes with high core protein levels through the induction of apoptosis, which can be a promising approach as part of a regimen to achieve functional cure. IMPORTANCE: Treatment with hepatitis B virus (HBV) capsid assembly modulators that induce the formation of aberrant HBV core protein structures (CAM-A) leads to programmed cell death, apoptosis, of HBV-infected hepatocytes and subsequent reduction of HBV antigens, which differentiates CAM-A from other CAMs. The effect is dependent on the de novo synthesis and high levels of core protein.


Assuntos
Antivirais , Apoptose , Regulação Viral da Expressão Gênica , Antígenos do Núcleo do Vírus da Hepatite B , Vírus da Hepatite B , Hepatócitos , Biossíntese de Proteínas , Animais , Camundongos , Antivirais/farmacologia , Antivirais/uso terapêutico , Apoptose/efeitos dos fármacos , Capsídeo/química , Capsídeo/classificação , Capsídeo/efeitos dos fármacos , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Hepatite B/tratamento farmacológico , Hepatite B/imunologia , Hepatite B/metabolismo , Hepatite B/virologia , Antígenos do Núcleo do Vírus da Hepatite B/biossíntese , Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Antígenos E da Hepatite B/metabolismo , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/crescimento & desenvolvimento , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/patogenicidade , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatócitos/virologia , Camundongos Endogâmicos C57BL , Camundongos SCID , Replicação Viral , Linhagem Celular , Linfócitos T CD8-Positivos/imunologia , Apresentação de Antígeno
2.
J Virol Methods ; 293: 114150, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33839187

RESUMO

Hepatitis B Virus (HBV) core protein has multiple functions in the viral life cycle and is an attractive target for new anti-viral therapies. Capsid assembly modulators (CAMs) target the core protein and induce the formation of either morphologically normal (CAM-N) or aberrant structures (CAM-A), both devoid of genomic material. To date a diverse family of CAM-N chemotypes has been identified, but in contrast, described CAM-As are based on the heteroaryldihydropyrimidine (HAP) scaffold. We used the HBV-inducible HepG2.117 cell line with immunofluorescent labeling of HBV core to develop and validate a cellular high-content image-based assay where aggregated core structures are identified using image analysis spot texture features. Treatment with HAPs led to a dose- and time-dependent formation of aggregated core appearing as dot-like structures in the cytoplasm and nucleus. By combining a biochemical and cellular screening approach, a compound was identified as a novel non-HAP scaffold able to induce dose-dependent formation of aberrant core structures, which was confirmed by electron microscopy and native gel electrophoresis. This compound displayed anti-HBV activity in HepG2.117 cells, providing proof-of-concept for our screening approach. We believe our combined biochemical and cellular high-content screening method will aid in expanding the range of CAM-A chemotypes.


Assuntos
Capsídeo , Vírus da Hepatite B , Pirimidinas , Montagem de Vírus , Replicação Viral
3.
J Gen Virol ; 96(Pt 1): 131-143, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25312585

RESUMO

Graft rejection in transplant patients is managed clinically by suppressing T-cell function with immunosuppressive drugs such as prednisolone and methylprednisolone. In such immunocompromised hosts, human cytomegalovirus (HCMV) is an important opportunistic pathogen and can cause severe morbidity and mortality. Currently, the effect of glucocorticosteroids (GCSs) on the HCMV life cycle remains unclear. Previous reports showed enhanced lytic replication of HCMV in vitro in the presence of GCSs. In the present study, we explored the implications of steroid exposure on latency and reactivation. We observed a direct effect of several GCSs used in the clinic on the activation of a quiescent viral major immediate-early promoter in stably transfected THP-1 monocytic cells. This activation was prevented by the glucocorticoid receptor (GR) antagonist Ru486 and by shRNA-mediated knockdown of the GR. Consistent with this observation, prednisolone treatment of latently infected primary monocytes resulted in HCMV reactivation. Analysis of the phenotype of these cells showed that treatment with GCSs was correlated with differentiation to an anti-inflammatory macrophage-like cell type. On the basis that these observations may be pertinent to HCMV reactivation in post-transplant settings, we retrospectively evaluated the incidence, viral kinetics and viral load of HCMV in liver transplant patients in the presence or absence of GCS treatment. We observed that combination therapy of baseline prednisolone and augmented methylprednisolone, upon organ rejection, significantly increased the incidence of HCMV infection in the intermediate risk group where donor and recipient are both HCMV seropositive (D+R+) to levels comparable with the high risk D+R- group.


Assuntos
Infecções por Citomegalovirus/metabolismo , Citomegalovirus/fisiologia , Glucocorticoides/metabolismo , Fígado/virologia , Células Mieloides/virologia , Ativação Viral/fisiologia , Latência Viral/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular/fisiologia , Linhagem Celular , Doenças Transmissíveis/metabolismo , Doenças Transmissíveis/virologia , Infecções por Citomegalovirus/virologia , Feminino , Humanos , Hospedeiro Imunocomprometido/fisiologia , Fígado/metabolismo , Transplante de Fígado/métodos , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Monócitos/virologia , Células Mieloides/metabolismo , Receptores de Glucocorticoides/metabolismo , Carga Viral/fisiologia , Adulto Jovem
4.
Assay Drug Dev Technol ; 11(8): 489-500, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24144343

RESUMO

Cell-based high-throughput screening campaigns are widely used to identify novel antiviral compounds, for example, against human immunodeficiency virus type 1 (HIV-1). Typically, these assays enable identification of compounds that potentially target any viral or cellular factor involved in the viral replication cycle. Unraveling the mechanism of action of these active compounds is an important step to facilitate further drug development. Time-of-addition (TOA) assays are an elegant tool to achieve this goal by comparing the TOA profile of novel compounds with those of well-studied reference compounds. Downscaling to a 384-well format and automation significantly increase the capacity of the TOA assay, enabling compound handling around the clock. Mechanical liquid dispensing with optimized time points for compound addition ensures robustness (Z'>0.8) and maximal resolution in profiling novel antiviral compounds. The presented methodology has been optimized for routine use and allows for fully automated high-throughput screening to support the process in search for novel inhibitors of HIV-1.


Assuntos
Fármacos Anti-HIV/farmacologia , HIV-1/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Fármacos Anti-HIV/administração & dosagem , Automação , Bioensaio , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Apresentação de Dados , Relação Dose-Resposta a Droga , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Indicadores e Reagentes , Padrões de Referência , Reprodutibilidade dos Testes , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...