Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Phys Rev Lett ; 132(14): 142502, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640383

RESUMO

A precision measurement of the ß^{+} decay of ^{8}B was performed using the Beta-decay Paul Trap to determine the ß-ν angular correlation coefficient a_{ßν}. The experimental results were combined with new ab initio symmetry-adapted no-core shell-model calculations to yield the second-most precise measurement from Gamow-Teller decays, a_{ßν}=-0.3345±0.0019_{stat}±0.0021_{syst}. This value agrees with the standard model value of -1/3 and improves uncertainties in ^{8}B by nearly a factor of 2. By combining results from ^{8}B and ^{8}Li, a tight limit on tensor current coupling to right-handed neutrinos was obtained. A recent global evaluation of all other precision ß decay studies suggested a nonzero value for right-handed neutrino coupling in contradiction with the standard model at just above 3σ. The present results are of comparable sensitivity and do not support this finding.

2.
Phys Rev Lett ; 131(8): 082502, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37683153

RESUMO

We present an apparatus for detection of cyclotron radiation yielding a frequency-based ß^{±} kinetic energy determination in the 5 keV to 2.1 MeV range, characteristic of nuclear ß decays. The cyclotron frequency of the radiating ß particles in a magnetic field is used to determine the ß energy precisely. Our work establishes the foundation to apply the cyclotron radiation emission spectroscopy (CRES) technique, developed by the Project 8 Collaboration, far beyond the 18-keV tritium endpoint region. We report initial measurements of ß^{-}'s from ^{6}He and ß^{+}'s from ^{19}Ne decays to demonstrate the broadband response of our detection system and assess potential systematic uncertainties for ß spectroscopy over the full (MeV) energy range. To our knowledge, this is the first direct observation of cyclotron radiation from individual highly relativistic ß's in a waveguide. This work establishes the application of CRES to a variety of nuclei, opening its reach to searches for new physics beyond the TeV scale via precision ß-decay measurements.

3.
Phys Rev Lett ; 130(19): 192502, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37243659

RESUMO

We present the first measurement of the α-ß-ν angular correlation in the Gamow-Teller ß^{+} decay of ^{8}B. This was accomplished using the Beta-decay Paul Trap, expanding on our previous work on the ß^{-} decay of ^{8}Li. The ^{8}B result is consistent with the V-A electroweak interaction of the standard model and, on its own, provides a limit on the exotic right-handed tensor current relative to the axial-vector current of |C_{T}/C_{A}|^{2}<0.013 at the 95.5% confidence level. This represents the first high-precision angular correlation measurements in mirror decays and was made possible through the use of an ion trap. By combining this ^{8}B result with our previous ^{8}Li results, we demonstrate a new pathway for increased precision in searches for exotic currents.

4.
Phys Rev Lett ; 131(26): 262701, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38215364

RESUMO

Nuclear isomer effects are pivotal in understanding nuclear astrophysics, particularly in the rapid neutron-capture process where the population of metastable isomers can alter the radioactive decay paths of nuclei produced during astrophysical events. The ß-decaying isomer ^{128m}Sb was identified as potentially impactful since the ß-decay pathway along the A=128 isobar funnels into this state bypassing the ground state. We report the first direct mass measurements of the ^{128}Sb isomer and ground state using the Canadian Penning Trap mass spectrometer at Argonne National Laboratory. We find mass excesses of -84564.8(25) keV and -84608.8(21) keV, respectively, resulting in an excitation energy for the isomer of 43.9(33) keV. These results provide the first key nuclear data input for understanding the role of ^{128m}Sb in nucleosynthesis, and we show that it will influence the flow of the rapid neutron-capture process.

5.
Phys Rev Lett ; 128(20): 202502, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35657880

RESUMO

The electroweak interaction in the standard model is described by a pure vector-axial-vector structure, though any Lorentz-invariant component could contribute. In this Letter, we present the most precise measurement of tensor currents in the low-energy regime by examining the ß-ν[over ¯] correlation of trapped ^{8}Li ions with the Beta-decay Paul Trap. We find a_{ßν}=-0.3325±0.0013_{stat}±0.0019_{syst} at 1σ for the case of coupling to right-handed neutrinos (C_{T}=-C_{T}^{'}), which is consistent with the standard model prediction.

6.
Phys Rev Lett ; 128(20): 202503, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35657888

RESUMO

We place unprecedented constraints on recoil corrections in the ß decay of ^{8}Li, by identifying a strong correlation between them and the ^{8}Li ground state quadrupole moment in large-scale ab initio calculations. The results are essential for improving the sensitivity of high-precision experiments that probe the weak interaction theory and test physics beyond the standard model. In addition, our calculations predict a 2^{+} state of the α+α system that is energetically accessible to ß decay but has not been observed in the experimental ^{8}Be energy spectrum, and has an important effect on the recoil corrections and ß decay for the A=8 systems. This state and an associated 0^{+} state are notoriously difficult to model due to their cluster structure and collective correlations, but become feasible for calculations in the ab initio symmetry-adapted no-core shell-model framework.

7.
Phys Rev Lett ; 127(20): 202501, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34860042

RESUMO

Two long-standing puzzles in the decay of ^{185}Bi, the heaviest known proton-emitting nucleus are revisited. These are the nonobservation of the 9/2^{-} state, which is the ground state of all heavier odd-A Bi isotopes, and the hindered nature of proton and α decays of its presumed 60-µs 1/2^{+} ground state. The ^{185}Bi nucleus has now been studied with the ^{95}Mo(^{93}Nb,3n) reaction in complementary experiments using the Fragment Mass Analyzer and Argonne Gas-Filled Analyzer at Argonne National Laboratory's ATLAS facility. The experiments have established the existence of two states in ^{185}Bi; the short-lived T_{1/2}=2.8_{-1.0}^{+2.3} µs, proton- and α-decaying ground state, and a 58(2)-µs γ-decaying isomer, the half-life of which was previously attributed to the ground state. The reassignment of the ground-state lifetime results in a proton-decay spectroscopic factor close to unity and represents the only known example of a ground-state proton decay to a daughter nucleus (^{184}Pb) with a major shell closure. The data also demonstrate that the ordering of low- and high-spin states in ^{185}Bi is reversed relative to the heavier odd-A Bi isotopes, with the intruder-based 1/2^{+} configuration becoming the ground, similar to the lightest At nuclides.

8.
Phys Rev Lett ; 124(25): 252702, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32639762

RESUMO

The discovery of presolar grains in primitive meteorites has initiated a new era of research in the study of stellar nucleosynthesis. However, the accurate classification of presolar grains as being of specific stellar origins is particularly challenging. Recently, it has been suggested that sulfur isotopic abundances may hold the key to definitively identifying presolar grains with being of nova origins and, in this regard, the astrophysical ^{33}Cl(p,γ)^{34}Ar reaction is expected to play a decisive role. As such, we have performed a detailed γ-ray spectroscopy study of ^{34}Ar. Excitation energies have been measured with high precision and spin-parity assignments for resonant states, located above the proton threshold in ^{34}Ar, have been made for the first time. Uncertainties in the ^{33}Cl(p,γ) reaction have been dramatically reduced and the results indicate that a newly identified ℓ=0 resonance at E_{r}=396.9(13) keV dominates the entire rate for T=0.25-0.40 GK. Furthermore, nova hydrodynamic simulations based on the present work indicate an ejected ^{32}S/^{33}S abundance ratio distinctive from type-II supernovae and potentially compatible with recent measurements of a presolar grain.

9.
Phys Rev Lett ; 121(22): 222501, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30547624

RESUMO

An experiment was performed at Lawrence Berkeley National Laboratory's 88-in. Cyclotron to determine the mass number of a superheavy element. The measurement resulted in the observation of two α-decay chains, produced via the ^{243}Am(^{48}Ca,xn)^{291-x}Mc reaction, that were separated by mass-to-charge ratio (A/q) and identified by the combined BGS+FIONA apparatus. One event occurred at A/q=284 and was assigned to ^{284}Nh (Z=113), the α-decay daughter of ^{288}Mc (Z=115), while the second occurred at A/q=288 and was assigned to ^{288}Mc. This experiment represents the first direct measurements of the mass numbers of superheavy elements, confirming previous (indirect) mass-number assignments.

11.
Phys Rev Lett ; 120(26): 262702, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-30004776

RESUMO

The Canadian Penning Trap mass spectrometer at the Californium Rare Isotope Breeder Upgrade (CARIBU) facility was used to measure the masses of eight neutron-rich isotopes of Nd and Sm. These measurements are the first to push into the region of nuclear masses relevant to the formation of the rare-earth abundance peak at A∼165 by the rapid neutron-capture process. We compare our results with theoretical predictions obtained from "reverse engineering" the mass surface that best reproduces the observed solar abundances in this region through a Markov chain Monte Carlo technique. Our measured masses are consistent with the reverse-engineering predictions for a neutron star merger wind scenario.

12.
Rev Sci Instrum ; 89(5): 052402, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29864884

RESUMO

An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed at Argonne National Laboratory as part of the californium rare ion breeder upgrade. For the past year, the EBIS-CB has been undergoing commissioning as part of the ATLAS accelerator complex. It has delivered both stable and radioactive beams with A/Q < 6, breeding times <30 ms, low background contamination, and charge breeding efficiencies >18% into a single charge state. The operation of this device, challenges during the commissioning phase, and future improvements will be discussed.

13.
Phys Rev Lett ; 120(18): 182502, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29775351

RESUMO

The structure of deformed neutron-rich nuclei in the rare-earth region is of significant interest for both the astrophysics and nuclear structure fields. At present, a complete explanation for the observed peak in the elemental abundances at A∼160 eludes astrophysicists, and models depend on accurate quantities, such as masses, lifetimes, and branching ratios of deformed neutron-rich nuclei in this region. Unusual nuclear structure effects are also observed, such as the unexpectedly low energies of the first 2^{+} levels in some even-even nuclei at N=98. In order to address these issues, mass and ß-decay spectroscopy measurements of the ^{160}Eu_{97} and ^{162}Eu_{99} nuclei were performed at the Californium Rare Isotope Breeder Upgrade radioactive beam facility at Argonne National Laboratory. Evidence for a gap in the single-particle neutron energies at N=98 and for large deformation (ß_{2}∼0.3) is discussed in relation to the unusual phenomena observed at this neutron number.

14.
Phys Rev Lett ; 118(15): 152504, 2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28452498

RESUMO

Despite the more than 1 order of magnitude difference between the measured dipole moments in ^{144}Ba and ^{146}Ba, the octupole correlations in ^{146}Ba are found to be as strong as those in ^{144}Ba with a similarly large value of B(E3;3^{-}→0^{+}) determined as 48(+21-29) W.u. The new results not only establish unambiguously the presence of a region of octupole deformation centered on these neutron-rich Ba isotopes, but also manifest the dependence of the electric dipole moments on the occupancy of different neutron orbitals in nuclei with enhanced octupole strength, as revealed by fully microscopic calculations.

15.
Phys Rev Lett ; 116(11): 112503, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-27035298

RESUMO

The neutron-rich nucleus ^{144}Ba (t_{1/2}=11.5 s) is expected to exhibit some of the strongest octupole correlations among nuclei with mass numbers A less than 200. Until now, indirect evidence for such strong correlations has been inferred from observations such as enhanced E1 transitions and interleaving positive- and negative-parity levels in the ground-state band. In this experiment, the octupole strength was measured directly by sub-barrier, multistep Coulomb excitation of a post-accelerated 650-MeV ^{144}Ba beam on a 1.0-mg/cm^{2} ^{208}Pb target. The measured value of the matrix element, ⟨3_{1}^{-}∥M(E3)∥0_{1}^{+}⟩=0.65(+17/-23) eb^{3/2}, corresponds to a reduced B(E3) transition probability of 48(+25/-34) W.u. This result represents an unambiguous determination of the octupole collectivity, is larger than any available theoretical prediction, and is consistent with octupole deformation.

17.
Phys Rev Lett ; 115(18): 182501, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26565463

RESUMO

In the standard model, the weak interaction is formulated with a purely vector-axial-vector (V-A) structure. Without restriction on the chirality of the neutrino, the most general limits on tensor currents from nuclear ß decay are dominated by a single measurement of the ß-ν[over ¯] correlation in ^{6}He ß decay dating back over a half century. In the present work, the ß-ν[over ¯]-α correlation in the ß decay of ^{8}Li and subsequent α-particle breakup of the ^{8}Be^{*} daughter was measured. The results are consistent with a purely V-A interaction and in the case of couplings to right-handed neutrinos (C_{T}=-C_{T}^{'}) limits the tensor fraction to |C_{T}/C_{A}|^{2}<0.011 (95.5% C.L.). The measurement confirms the ^{6}He result using a different nuclear system and employing modern ion-trapping techniques subject to different systematic uncertainties.

18.
Phys Rev Lett ; 115(13): 132502, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26451549

RESUMO

Two isomers decaying by electromagnetic transitions with half-lives of 4.7(1.1) and 247(73) µs have been discovered in the heavy ^{254}Rf nucleus. The observation of the shorter-lived isomer was made possible by a novel application of a digital data acquisition system. The isomers were interpreted as the K^{π}=8^{-}, ν^{2}(7/2^{+}[624],9/2^{-}[734]) two-quasineutron and the K^{π}=16^{+}, 8^{-}ν^{2}(7/2^{+}[624],9/2^{-}[734])⊗8^{-}π^{2}(7/2^{-}[514],9/2^{+}[624]) four-quasiparticle configurations, respectively. Surprisingly, the lifetime of the two-quasiparticle isomer is more than 4 orders of magnitude shorter than what has been observed for analogous isomers in the lighter N=150 isotones. The four-quasiparticle isomer is longer lived than the ^{254}Rf ground state that decays exclusively by spontaneous fission with a half-life of 23.2(1.1) µs. The absence of sizable fission branches from either of the isomers implies unprecedented fission hindrance relative to the ground state.

19.
Rev Sci Instrum ; 85(2): 02B903, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24593608

RESUMO

The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory Argonne Tandem Linac Accelerator System (ATLAS) facility provides low-energy and accelerated neutron-rich radioactive beams to address key nuclear physics and astrophysics questions. A 350 mCi (252)Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The ECR charge breeder has achieved stable beam charge breeding efficiencies of 10.1% for (23)Na(7+), 17.9% for (39)K(10+), 15.6% for (84)Kr(17+), and 12.4% for (133)Cs(27+). For the radioactive beams, a charge breeding efficiency of 11.7% has been achieved for (143)Cs(27+) and 14.7% for (143)Ba(27+). The typical breeding times are 10 ms/charge state, but the source can be tuned such that this value increases to 100 ms/charge state with the best breeding efficiency corresponding to the longest breeding times-the variation of efficiencies with breeding time will be discussed. Efforts have been made to characterize and reduce the background contaminants present in the ion beam through judicious choice of q/m combinations. Methods of background reduction are being investigated based upon plasma chamber cleaning and vacuum practices.

20.
Phys Rev Lett ; 111(6): 061102, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23971550

RESUMO

The Canadian Penning Trap mass spectrometer has made mass measurements of 33 neutron-rich nuclides provided by the new Californium Rare Isotope Breeder Upgrade facility at Argonne National Laboratory. The studied region includes the 132Sn double shell closure and ranges in Z from In to Cs, with Sn isotopes measured out to A=135, and the typical measurement precision is at the 100 ppb level or better. The region encompasses a possible major waiting point of the astrophysical r process, and the impact of the masses on the r process is shown through a series of simulations. These first-ever simulations with direct mass information on this waiting point show significant increases in waiting time at Sn and Sb in comparison with commonly used mass models, demonstrating the inadequacy of existing models for accurate r-process calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...