Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Energy Fuels ; 36(9): 4625-4639, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35558990

RESUMO

With photovoltaics becoming a mature, commercially feasible technology, society is willing to allocate resources for developing and deploying new technologies based on using solar light. Analysis of projects supported by the European Commission in the past decade indicates exponential growth of funding to photocatalytic (PC) and photoelectrocatalytic (PEC) technologies that aim either at technology readiness levels (TRLs) TRL 1-3 or TRL > 3, with more than 75 Mio€ allocated from the year 2019 onward. This review provides a summary of PC and PEC processes for the synthesis of bulk commodities such as solvents and fuels, as well as chemicals for niche applications. An overview of photoreactors for photocatalysis on a larger scale is provided. The review rounds off with the summary of reactions performed at lab scale under natural outdoor solar light to illustrate conceptual opportunities offered by solar-driven chemistry beyond the reduction of CO2 and water splitting. The authors offer their vision of the impact of this area of research on society and the economy.

2.
J Appl Clin Med Phys ; 23(7): e13637, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35635549

RESUMO

PURPOSE: To assess differences between frame-based and cone beam computed tomography (CBCT)-defined stereotactic space and to identify predictors of the observed findings. METHODS AND MATERIALS: Differences between frame-based and CBCT-defined stereotactic space after image co-registration were reviewed for 529 patients. Treatment planning system reported the information about the shifts in X, Y, and Z coordinates of the center of the stereotactic space (i.e., coordinate X = 100 mm, Y = 100 mm, and Z = 100 mm) defined by the frame, and the maximum shot displacement (MSD) in mm. We collected the potential predictors of the differences. In total, 19 factors were investigated. We used multiple linear regression to evaluate associations with the increased differences. RESULTS: Rotational and translational shifts greater than 1° and 1 mm, respectively, were observed in 2.6% of patients. At the same time, a decrease in tumor coverage of more than 5% was detected in 8.3% of cases. It was revealed that the higher fiducial errors (both mean and maximum), the greater weight of the patient, and the lower Karnofsky Performance Scale were predictors of increased rotational, translational shifts, and the MSD.


Assuntos
Neoplasias , Radiocirurgia , Tomografia Computadorizada de Feixe Cônico Espiral , Tomografia Computadorizada de Feixe Cônico/métodos , Humanos , Imageamento Tridimensional/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Neoplasias/cirurgia , Radiocirurgia/métodos
3.
Nat Commun ; 13(1): 2171, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449208

RESUMO

Chromoselective photocatalysis offers an intriguing opportunity to enable a specific reaction pathway out of a potentially possible multiplicity for a given substrate by using a sensitizer that converts the energy of incident photon into the redox potential of the corresponding magnitude. Several sensitizers possessing different discrete redox potentials (high/low) upon excitation with photons of specific wavelength (short/long) have been reported. Herein, we report design of molecular structures of two-dimensional amorphous covalent triazine-based frameworks (CTFs) possessing intraband states close to the valence band with strong red edge effect (REE). REE enables generation of a continuum of excited sites characterized by their own redox potentials, with the magnitude proportional to the wavelength of incident photons. Separation of charge carriers in such materials depends strongly on the wavelength of incident light and is the primary parameter that defines efficacy of the materials in photocatalytic bromination of electron rich aromatic compounds. In dual Ni-photocatalysis, excitation of electrons from the intraband states to the conduction band of the CTF with 625 nm photons enables selective formation of C‒N cross-coupling products from arylhalides and pyrrolidine, while an undesirable dehalogenation process is completely suppressed.

4.
Angew Chem Int Ed Engl ; 61(27): e202203170, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35478427

RESUMO

Direct synthesis of N-containing organic compounds from dinitrogen (N2 ) can make synthetic chemistry more sustainable. Previous bottlenecks in lithium-mediated N2 fixation were resolved by loading Li-metal anodes covered with the typical Li+ ion-conducting solid electrolyte interface, which are subsequently allowed to react with N2 . The developed strategy allowed us to reach high Faradaic efficiencies toward Li3 N. These reactive Li3 N were then contacted with acylchlorides. Surface nitride ions are more nucleophilic than amines which direct the two C-N coupling reactions toward formation of imides rather than amides, and an integrated current efficiency of 57-77 % could be realized. This study thereby not only provides a feasible electrochemical Li3 N synthesis, but also delineates an economical and green synthesis of highly valuable N-containing compounds from N2 under mild conditions, just using commercial spare parts and processes from the omnipresent Li battery technology.

5.
Org Lett ; 24(13): 2483-2487, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35324213

RESUMO

Mesoporous graphitic carbon nitride (mpg-CN) is introduced as a heterogeneous photocatalyst to perform dual photoredox- and nickel-catalyzed cross-coupling reactions between alkyl bis(catecholato)silicates as radical precursors and aryl or alkenyl bromides. The synergy between this recyclable photocatalyst and the broadly applied homogeneous nickel complex [Ni(dtbbpy)Br2] gives access to C(sp2)-C(sp3) cross-coupling products in a sustainable fashion. The recycled mpg-CN photocatalyst was analyzed by time-resolved emission spectroscopy and EPR spectroscopy.

6.
ACS Org Inorg Au ; 2(2): 153-158, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36855461

RESUMO

Visible light photocatalysis is a tool in synthetic chemistry that allows us to utilize the energy of photons via photoinduced electron transfer to promote diverse organic reactions. Herein, a heterogeneous transition metal-free material, a type of carbon nitride photocatalyst, potassium poly(heptazine imide), is employed to produce sulfonyl chlorides from arenediazonium salts under mild conditions (visible light irradiation, room temperature) with 50-95% yields. The method is suitable for the synthesis of both electron rich and electron deficient compounds, and it shows high tolerance toward different functional groups (halides, ester, nitro, cyano groups). Thus, a sustainable photocatalytic alternative to the Meerwein chlorosulfonylation reaction is offered.

7.
Angew Chem Int Ed Engl ; 60(37): 20543-20550, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34223699

RESUMO

Among external stimuli used to promote a chemical reaction, photocatalysis possesses a unique one-light. Photons are traceless reagents that provide an exclusive opportunity to alter chemoselectivity of the photocatalytic reaction varying the color of incident light. This strategy may be implemented by using a sensitizer capable to activate a specific reaction pathway depending on the excitation light. Herein, we use potassium poly(heptazine imide) (K-PHI), a type of carbon nitride, to generate selectively three different products from S-arylthioacetates simply varying the excitation light and otherwise identical conditions. Namely, arylchlorides are produced under UV/purple, sulfonyl chlorides with blue/white, and diaryldisulfides at green to red light. A combination of the negatively charged polyanion, highly positive potential of the valence band, presence of intraband states, ability to sensitize singlet oxygen, and multi-electron transfer is shown to enable this chromoselective conversion of thioacetates.

8.
J Phys Chem C Nanomater Interfaces ; 125(25): 13749-13758, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34239658

RESUMO

Potassium poly (heptazine imide) (K-PHI), a crystalline two-dimensional carbon-nitride material, is an active photocatalyst for water splitting. The potassium ions in K-PHI can be exchanged with other ions to change the properties of the material and eventually to design the catalysts. We report here the electronic structures of several ion-exchanged salts of K-PHI (K, H, Au, Ru, and Mg) and their feasibility as water splitting photocatalysts, which were determined by density functional theory (DFT) calculations. The DFT results are complemented by experiments where the performances in the photocatalytic hydrogen evolution reaction (HER) were recorded. We show that due to its narrow band gap, Ru-PHI is not a suitable photocatalyst. The water oxidation potentials are straddled between the band edge potentials of H-PHI, Au-PHI, and Mg-PHI; thus, these are active photocatalysts for both the oxygen and hydrogen evolution reactions, whereas K-PHI is active only for the HER. The experimental data show that these are active HER photocatalysts, in agreement with the DFT results. Furthermore, Mg-PHI has shown remarkable performance in the HER, with a rate of 539 µmol/(h·g) and a quantum efficiency of 7.14% at 410 nm light irradiation, which could be due to activation of the water molecule upon adsorption, as predicted by our DFT calculations.

9.
Nat Commun ; 12(1): 3224, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050154

RESUMO

Fabrication of hybrid photoelectrodes on a subsecond timescale with low energy consumption and possessing high photocurrent densities remains a centerpiece for successful implementation of photoelectrocatalytic synthesis of fuels and value-added chemicals. Here, we introduce a laser-driven technology to print sensitizers with desired morphologies and layer thickness onto different substrates, such as glass, carbon, or carbon nitride (CN). The specially designed process uses a thin polymer reactor impregnated with transition metal salts, confining the growth of transition metal oxide (TMO) nanostructures on the interface in milliseconds, while their morphology can be tuned by the laser. Multiple nano-p-n junctions at the interface increase the electron/hole lifetime by efficient charge trapping. A hybrid copper oxide/CN photoanode with optimal architecture reaches 10 times higher photocurrents than the pristine CN photoanode. This technology provides a modular approach to build a library of TMO-based composite films, enabling the creation of materials for diverse applications.

10.
ACS Appl Mater Interfaces ; 13(22): 25858-25867, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34028257

RESUMO

Because of their peculiar nitrogen-rich structure, carbon nitrides are convenient polydentate ligands for designing single atom-dispersed photocatalysts. However, the relation between catalysts' textural properties and their photophysical-photocatalytic properties is rarely elaborated. Herein, we report the preparation and characterization of a series of single-atom heterogeneous catalysts featuring highly dispersed Ag and Cu species on mesoporous graphitic C3N4. We show that adjustment of materials textural properties and therefore metal single-atom coordination mode enables ligand-to-metal charge transfer (LMCT) or ligand-to-metal-to-ligand charge transfer (LMLCT), properties that were long speculated in single-atom catalysis but never observed. We employ the developed materials in the degradation of organic pollutants under irradiation with visible light. Kinetic investigations under flow conditions show that single atoms of Ag and Cu decrease the number of toxic organic fragmentation products while leading to a higher selectivity toward full degradation. The results correlate with the selected mode of charge transfer in the designed photocatalysts and provide a new understanding of how the local environment of a single-atom catalyst affects the surface structure and reactivity. The concepts can be exploited further to rationally design and optimize other single-atom materials.

11.
ACS Nano ; 15(4): 6551-6561, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33822587

RESUMO

Bioinspired nanoconfined catalysis has developed to become an important tool for improving the performance of a wide range of chemical reactions. However, photocatalysis in a nanoconfined environment remains largely unexplored. Here, we report the application of a free-standing and flow-through carbon nitride nanotube (CNN) membrane with pore diameters of 40 nm for confined photocatalytic reactions where reactants are in contact with the catalyst for <65 ms, as calculated from the flow. Due to the well-defined tubular structure of the membrane, we are able to assess quantitatively the photocatalytic performance in each of the parallelized single carbon nitride nanotubes, which act as spatially isolated nanoreactors. In oxidation of benzylamine, the confined reaction shows an improved performance when compared to the corresponding bulk reaction, reaching a turnover frequency of (9.63 ± 1.87) × 105 s-1. Such high rates are otherwise only known for special enzymes and are clearly attributed to the confinement of the studied reactions within the one-dimensional nanochannels of the CNN membrane. Namely, a concave surface maintains the internal electric field induced by the polar surface of the carbon nitride inside the nanotube, which is essential for polarization of reagent molecules and extension of the lifetime of the photogenerated charge carriers. The enhanced flow rate upon confinement provides crucial insight on catalysis in such an environment from a physical chemistry perspective. This confinement strategy is envisioned not only to realize highly efficient reactions but also to gain a fundamental understanding of complex chemical processes.

12.
Exploration (Beijing) ; 1(3): 20210063, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37323696

RESUMO

A combination of photochemistry and proton coupled electron transfer (PCET) is a primary strategy employed by biochemical systems and synthetic chemistry to enable uphill reactions under mild conditions. Degenerate nanometer-sized n-type semiconductor nanoparticles (SCNPs) with the Fermi level above the bottom of the conduction band are strongly reducing and act more like metals than semiconductors. Application of the degenerate SCNPs is limited to few examples. Herein, we load microporous potassium poly(heptazine imide) (K-PHI) nanoparticles with electrons (e‒) and charge balancing protons (H+) in an illumination phase using sacrificial agents. e‒/H+ in the K-PHI nanoparticles are weakly bound and therefore could be used in a range of PCET reactions in dark, such as generation of aryl radicals from aryl halides, ketyl radicals from ketones, and 6e‒/6H+ reduction of nitrobenzene to aniline. The integration of several features that until now were intrinsic for plants and natural photosynthesis into a transition metal free nanomaterial composed of abundant elements (C, N, and K) offers a powerful tool for synthetic organic chemistry.

13.
Angew Chem Int Ed Engl ; 60(13): 7436-7443, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33259655

RESUMO

In photocatalysis, small organic molecules are converted into desired products using light responsive materials, electromagnetic radiation, and electron mediators. Substitution of low molecular weight reagents with redox active functional materials may increase the utility of photocatalysis beyond organic synthesis and environmental applications. Guided by the general principles of photocatalysis, we design hybrid nanocomposites composed of n-type semiconducting potassium poly(heptazine imide) (K-PHI), and p-type conducting poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as the redox active substrate. Electrical conductivity of the hybrid nanocomposite, possessing optimal K-PHI content, is reversibly modulated combining a series of external stimuli ranging from visible light under inert conditions and to dark conditions under an O2 atmosphere. Using a conductive polymer as the redox active substrate allows study of the photocatalytic processes mediated by semiconducting photocatalysts through electrical conductivity measurements.

14.
Chempluschem ; 85(11): 2499-2517, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33215877

RESUMO

Carbon nitrides encompass a class of transition-metal-free materials possessing numerous advantages such as low cost (few Euros per gram), high chemical stability, broad tunability of redox potentials and optical bandgap, recyclability, and a high absorption coefficient (>105  cm-1 ), which make them highly attractive for application in photoredox catalysis. In this Review, we classify carbon nitrides based on their unique properties, structure, and redox potentials. We summarize recently emerging concepts in heterogeneous carbon nitride photocatalysis, with an emphasis on the synthesis of organic compounds: 1) Illumination-Driven Electron Accumulation in Semiconductors and Exploitation (IDEASE); 2) singlet-triplet intersystem crossing in carbon nitride excited states and related energy transfer; 3) architectures of flow photoreactors; and 4) dual metal/carbon nitride photocatalysis. The objective of this Review is to provide a detailed overview regarding innovative research in carbon nitride photocatalysis focusing on these topics.

15.
Angew Chem Int Ed Engl ; 59(35): 15061-15068, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32412175

RESUMO

Polymeric carbon nitride materials have been used in numerous light-to-energy conversion applications ranging from photocatalysis to optoelectronics. For a new application and modelling, we first refined the crystal structure of potassium poly(heptazine imide) (K-PHI)-a benchmark carbon nitride material in photocatalysis-by means of X-ray powder diffraction and transmission electron microscopy. Using the crystal structure of K-PHI, periodic DFT calculations were performed to calculate the density-of-states (DOS) and localize intra band states (IBS). IBS were found to be responsible for the enhanced K-PHI absorption in the near IR region, to serve as electron traps, and to be useful in energy transfer reactions. Once excited with visible light, carbon nitrides, in addition to the direct recombination, can also undergo singlet-triplet intersystem crossing. We utilized the K-PHI centered triplet excited states to trigger a cascade of energy transfer reactions and, in turn, to sensitize, for example, singlet oxygen (1 O2 ) as a starting point to synthesis up to 25 different N-rich heterocycles.

16.
Sci Adv ; 6(14): eaaz2310, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32284980

RESUMO

Oxygen activation is a critical step in ubiquitous heterogeneous oxidative processes, most prominently in catalysis, electrolysis, and pharmaceutical applications. We present here our findings on metal-free O2 activation on covalent triazine frameworks (CTFs) as an important class of N-rich materials. The O2 activation process was studied for the formation of aldehydes, ketones and imines. A detailed mechanistic study of O2 activation and the role of nitrogen heteroatoms were comprehensively investigated. The electron paramagnetic resonance (EPR) and control experiments provide strong evidence for the reaction mechanism proving the applicability of the CTFs to activate oxygen into superoxide species. This report highlights the importance of a self-templating procedure to introduce N functionalities for the development of metal-free catalytic materials. The presented findings reveal an important step toward the use of CTFs as inexpensive and high-performance alternatives to metal-based materials not only for catalysis but also for biorelated applications dealing with O2 activation.

17.
Nat Commun ; 11(1): 1387, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170119

RESUMO

Small organic radicals are ubiquitous intermediates in photocatalysis and are used in organic synthesis to install functional groups and to tune electronic properties and pharmacokinetic parameters of the final molecule. Development of new methods to generate small organic radicals with added functionality can further extend the utility of photocatalysis for synthetic needs. Herein, we present a method to generate dichloromethyl radicals from chloroform using a heterogeneous potassium poly(heptazine imide) (K-PHI) photocatalyst under visible light irradiation for C1-extension of the enone backbone. The method is applied on 15 enones, with γ,γ-dichloroketones yields of 18-89%. Due to negative zeta-potential (-40 mV) and small particle size (100 nm) K-PHI suspension is used in quasi-homogeneous flow-photoreactor increasing the productivity by 19 times compared to the batch approach. The resulting γ,γ-dichloroketones, are used as bifunctional building blocks to access value-added organic compounds such as substituted furans and pyrroles.

18.
ACS Appl Mater Interfaces ; 12(7): 8176-8182, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31962048

RESUMO

A triphasic photocatalytic reactor employing a mesoporous carbon nitride photocatalyst and aerobic O2 was assembled to operate under continuous flow conditions. This reactor design allows for facile downstream processing and reusability in multiple flow cycles. The selective aerobic oxidation of alcohols and amines was chosen to demonstrate the applicability and performance advantage of this flow approach compared to that of conventional batch photochemistry. This precious-metal-free photocatalytic flow system operates under benign reaction conditions (visible light, low pressure, and mild temperature) and will stimulate the exploration of other oxidative reactions in a sustainable, scalable, and affordable manner.

19.
Angew Chem Int Ed Engl ; 59(41): 18184-18188, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33448554

RESUMO

A sunlight-powered process is reported that employs carbon dots (CDs) as light absorbers for the conversion of lignocellulose into sustainable H2 fuel and organics. This photocatalytic system operates in pure and untreated sea water at benign pH (2-8) and ambient temperature and pressure. The CDs can be produced in a scalable synthesis directly from biomass itself and their solubility allows for good interactions with the insoluble biomass substrates. They also display excellent photophysical properties with a high fraction of long-lived charge carriers and the availability of a reductive and an oxidative quenching pathway. The presented CD-based biomass photoconversion system opens new avenues for sustainable, practical, and renewable fuel production through biomass valorization.

20.
Angew Chem Int Ed Engl ; 58(42): 14950-14954, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31424624

RESUMO

Polymeric carbon nitride (PCN) is usually synthesized from nitrogen-rich monomers such as cyanamide, melamine, and urea, but is rather disordered in many cases. Now, a new allotrope of carbon nitride with internal heterostructures was obtained by co-condensation of very electron poor monomers (for example, 5-amino-tetrazole and nucleobases) in the presence of mild molten salts (for example, NaCl/KCl) to mediate the polymerization kinetics and thus modulate the local structure, charge carrier properties, and most importantly the HOMO and LUMO levels. Results reveal that the as-prepared NaK-PHI-A material shows excellent photo-redox activities because of a nanometric hetero-structure which enhances visible light absorption and promotes charge separation in the different domains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...